Rapid and high-sensitivity analysis of methane clumped isotopes $(\Delta^{13}CH_3D \text{ and } \Delta^{12}CH_2D_2)$ using mid-infrared laser spectroscopy

Naizhong Zhang^{1*}, Ivan Prokhorov¹, Béla Tuzson¹, Magyar Paul¹, Nico Kueter², Gang Li³, Volker Ebert⁴, Malavika Sivan⁵, Mayuko Nakagawa⁶, Alexis Gilbert^{6,7}, Yuichiro Ueno^{6,7}, Thomas Röckmann⁵, Stefano Bernasconi², Lukas Emmenegger¹, & Joachim Mohn¹

¹ Laboratory for Air Pollution / Environmental Technology, Empa, 8600 Dübendorf, Switzerland

² Department of Earth and Planetary Science, ETH Zurich, 8092 Zürich, Switzerland

³ Department General and Inorganic Chemistry, PTB, 38116 Braunschweig, Germany

⁴ Department Analytical Chemistry of the Gas Phase, PTB, 38116 Braunschweig, Germany

- ⁵ Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht University, Utrecht 3584CC, The Netherlands
- ⁶ Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 152-8550 Tokyo, Japan
- ⁷ Earth-Life Science Institute, Tokyo Institute of Technology, 152-8550 Tokyo, Japan

*Presenting Author Email: naizhong.zhang@empa.ch

In the past decade, advancements in techniques for methane clumped isotope analysis ($\Delta^{13}CH_3D$ and $\Delta^{12}CH_2D_2$) have enabled a more detailed tracing of CH₄ pathways, especially in cases where multiple processes and sources are involved. These paired datasets can serve as proxy for investigating CH₄ formation temperatures or for studying the contributions of kinetically controlled processes [1]. To date, paired CH₄ clumped isotope ratios are mainly analyzed by HR-IRMS, achieving a precision of better than 0.3‰ for $\Delta^{13}CH_3D$ and 1.5‰ for $\Delta^{12}CH_2D_2$ with sample size of 3-5 mL [1,2]. Alternatively, mid-infrared laser absorption spectroscopy offers rapid, non-destructive analysis of CH₄ clumped isotopes. However, current method requires sample sizes of 20 mL, which significantly limits its applicability for natural samples [3].

To enhance the performance of spectroscopic measurement of CH₄ clumped isotopes, we established a laser spectroscopic platform with optimized spectral windows: 1076.97 cm⁻¹ for CH₂D₂ and 1163.47 cm⁻¹ for ¹³CH₃D, and a custom-built gas inlet system. This was achieved by conducting an extensive spectral survey on newly recorded HR-FTIR spectra across the wavelength range of 870 cm⁻¹ to 3220 cm⁻¹, thereby addressing gaps in existing spectral databases for ¹²CH₂D₂. In addition, we implemented several key technological advances, which result in superior performance during sample injection and analysis.

We demonstrated the feasibility of reducing sample size down to 3–7 mL CH₄ gas, achieving precision levels comparable to that of HR-IRMS. Specifically, for sample sizes ranging from 3–10 mL, achieving a precision better than 1.5‰ in Δ^{12} CH₂D₂ requires 4–6 repetitive measurements using a recycle-refilling system, while for sample volumes greater than 10 mL, measurements can be completed within 20 mins. These advancements in reducing sample size and shortening analysis time make the spectroscopic technique a more practical tool for analyzing the clumped isotope signatures of natural CH₄ samples, in particular for applications with low CH₄ concentrations or requiring consecutive analyses, potentially in conjunction with an automated pre-concentration system.

References

[1] Young et al. (2017) Geochimica et Cosmochimica Acta 203, 235-264.

- [2] Eldridge et al. (2019) ACS Earth and Space Chemistry 3, 2747-2764.
- [3] Gonzalez et al. (2019) Analytical Chemistry 91, 14967-14974.