Combining different methodological approaches for estimating N₂O processes and N₂O reduction

Peter M. Homyak

University of California, Riverside, USA Presenting Author Email: phomyak@ucr.edu

Global changes caused by anthropogenic activities are altering the cycling of nitrogen (N) in terrestrial ecosystems. For example, droughts of increasing in frequency and severity can stimulate large emission pulses of nitrous oxide (N2O; a powerful greenhouse gas) when dry soils wet up, but the mechanisms governing the N losses are not fully resolved. Further, more frequent wildfires can favor the colonization of novel pyrophilous or "fire-loving" fungi with the capacity to produce N₂O, yet N₂O isotopic ranges have been characterized in few fungal species, making generalizations difficult. To better understand how global changes are altering the N cycle, we studied drylands in southern California that can experience >6 months without rain and used a culture collection of pyrophilous fungi isolated from wildfire-burned soils to characterize their $\delta^{15}N_2Obulk$, $\delta N_2^{18}O^{bulk}$, and $\delta^{15}N_2O^{SP}$ values. Despite the hot and dry conditions known to hinder denitrification, isotope tracers and natural abundance isotopologues of N₂O indicated NO₃ was reduced within 15 minutes of wetting dry desert soils and that N₂O reduction to N₂ occurred. In contrast to NO₃⁻, ¹⁵N-NH₄⁺ was not found in N₂O, suggesting nitrification cannot account for the N₂O produced in these predominantly aerobic systems. In post-fire environments, we found that while N₂O isotope values for Neurospora discreta and Fusarium tricinctum closely matched literature values when grown with NO₂-, Aspergillus fumigatus, Coniochaeta hoffmannii, Holtermaniella festucosa, and R. columbienses did not. Further, Fusarium sp. $\delta^{15}N_2O^{bulk}$ and $\delta N_2^{18}O^{bulk}$ values fell outside literature-derived values when grown with NO₃. Overall, we find that despite the hot and dry conditions known to make denitrification thermodynamically unfavorable in many drylands, denitrifiers can endure through hot and dry summers and are key to producing the surprisingly large N₂O emissions when dry desert soils wet up. Further, we find that novel pyrophilous fungi present a unique opportunity to further characterize the isotopic composition of N2O produced by fungal denitrification, allowing us to better characterize sources of N₂O from ecosystems impacted by global changes.