Unveiling the Hidden Dynamics: How Production and Consumption Pathways Influence N₂O Emissions in Estuaries

Xia Liang^{*}, Yanling Zheng, Xiaofei Li, Hongpo Dong, Guoyu Yin, & Lijun Hou

East China Normal University, Shanghai, China *Presenting Author Email: xliang@sklec.ecnu.edu.cn

Estuaries play an important role in reducing nitrogen transport from rivers to the ocean and have become hotspots for global N₂O emissions. However, the complex hydrological and topographic characteristics of estuaries result in significant spatiotemporal heterogeneity in N₂O emissions. We quantitatively identified the N₂O production pathways and consumption processes in the Yangtze River estuary in China by combining molecular approaches and isotopocule analyses. The N₂O fluxes and N₂O isotopocule ratios ($\delta^{15}N^{\text{bulk}}$, $\delta^{18}O$, and SP) of the estuary exhibited significant spatiotemporal heterogeneity, with N₂O fluxes decreasing and N₂O isotopocule ratios increasing with the rise in sediment salinity. The Monte Carlo modelling tool FRAME was used to quantitatively discriminate the N₂O production pathways and consumption processes of the Yangtze River estuary, and the results were verified by a dual N₂O isotope mapping approach (MAP) and the ¹⁵N-¹⁸O double tracer technique. The fractional contribution of nitrifier denitrification (nD) and bacterial denitrification (bD) to total N₂O production in the estuary ranged from 18% to 83%, with nitrifier denitrification contributing about half. Approximately 15% to 80% of N₂O was reduced throughout the year. Temperature, salinity, and sediment NO_2^- concentration were the key factors affecting N_2O production and consumption, with NO_2^- playing a more significant role. Unexpectedly, we found that the ¹⁵N-¹⁸O double tracer technique for analyzing key N₂O production processes in sediments is limited by environmental temperatures, as it cannot effectively analyze the fraction of N₂O produced by nitrifier denitrification under low-temperature (e.g., winter) incubation conditions. Considering that NO2⁻ concentration in the sediments of the estuary primarily originates from anthropogenic sources, this strongly suggests that controlling human reactive nitrogen inputs is crucial for reducing N₂O emissions in estuaries.