Combining different methodological approaches for estimating N₂O processes and N₂O reduction

Caroline Buchen-Tschiskale^{1*}, Dominika Lewicka-Szczebak², Gianni Micucci³, Thade Potthoff⁴, & Reinhard Well¹

¹ Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany

² Institute of Geological Sciences, University of Wrocław, Wrocław, Poland

³ Department of Civiel Engineering and applied Mechanics, McGill University, Montréal, Canada

⁴ Institute for Crop and Soil Science, Julius Kühn Institute - Federal Research Centre for Cultivated Plants, Braunschweig, Germany

*Presenting Author Email: caroline.buchen-tschiskale@thuenen.de

Nitrous oxide (N_2O) emissions contribute significantly to greenhouse gas effect and are mainly produced through agricultural practices, particularly following the application of nitrogen-based fertilizers. Identifying the specific microbial processes responsible for N_2O emissions is crucial to better understand the underlying mechanisms and develop targeted climate change mitigation strategies.

In recent decades, the analysis of abundance of the four most abundant isotopocules of N_2O (¹⁴N¹⁴N¹⁶O, ¹⁴N¹⁵N¹⁶O, ¹⁵N¹⁴N¹⁶O, ¹⁴N¹⁴N¹⁸O) has represented a promising alternative to evaluate N_2O production pathways (heterotrophic bacterial denitrification, nitrifier-denitrification, fungal denitrification, nitrification) and N_2O reduction to N_2 . To obtain a best estimate for N_2O reduction, this approach can be combined with the ¹⁵N gas flux method with N_2 -depleted atmosphere (¹⁵NGF+), which allows direct quantification of N_2 . Nevertheless, the N_2O isotopocule approach cannot distinguish between heterotrophic bacterial denitrification and nitrifier denitrification, while the ¹⁵NGF+ method cannot differentiate between nitrifier-denitrification and nitrification and nitrification. Thus, the combination of both approaches provides values for heterotrophic bacterial denitrification and nitrification and will improve our understanding of the N_2O processes.

We will present the calculation strategies and examples of combined datasets of N_2O isotopocules and ¹⁵NGF+ from various laboratory and field studies.