Nitrogen nutrition effects on $\delta^{13}C$ of plant respired CO₂ are mostly caused by concurrent changes in organic acid utilization and remobilization

Yang Xia^{1,2*}, Julie Lalande³, Franz-W. Badeck⁴, Cyril Girardin⁵, Camille Bathellier⁶, Gerd Gleixner⁷, Roland A. Werner⁸, Shiva Ghiasi^{8,9}, Mélodie Faucon¹, Karen Cosnier¹⁰, Chantal Fresneau¹, Guillaume Tcherkez^{3,10} & Jaleh Ghashghaie¹

- ¹ Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution (ESE), Gif-sur-Yvette, France
- ² Collage of Life Science and Oceanography, Shenzhen University, Shenzhen, China
- ³ Institut de recherche en horticulture et semences, UMR 1345, Université d'Angers, SFR Quasav, Beaucouzé, France
- ⁴ Research centre for Genomics & Bioinformatics (CREA- GB), Council for Agricultural Research and Economics, Fiorenzuola d'Arda, Italy
- ⁵ Université Paris-Saclay, INRAE, UMR 1402 ECOSYS, Campus Agro Paris-Saclay, Palaiseau, France
- ⁶ Centre d'affaires ATEAC, Elementar France, Lyon, France
- ⁷ Max Planck Institute for Biogeochemistry, Jena, Germany
- ⁸ Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- ⁹ Department Agroecology and Environment, Agroscope, Zurich, Switzerland

¹⁰ Research school of biology, Australian National University, Canberra, Australian Capital Territory, Australia *Presenting Author Email: catherinen_xia@hotmail.com

Nitrogen (N) nutrition impacts on primary carbon metabolism and can lead to changes in δ^{13} C of respired CO₂. However, uncertainty remains as to whether (i) the effect of N nutrition is observed in all species, (ii) N source also impacts on respired CO₂ in roots and (iii) a metabolic model can be constructed to predict δ^{13} C of respired CO₂ under different N sources. Here, we carried out isotopic measurements of respired CO₂ and various metabolites using two species (spinach, French bean) grown under different NH₄⁺:NO₃⁻ ratios. Both species showed a similar pattern, with a progressive ¹³C-depletion in leafrespired CO₂ as the ammonium proportion increased, while δ^{13} C in root-respired CO₂ was mostly determined by organic acid (malate, citrate) metabolism, in both leaves and roots. We then took advantage of non-stationary, two-pool modelling that explained 73% of variance in δ^{13} C in respired CO₂. It demonstrates the critical role of the balance between the utilization of respiratory intermediates and the remobilization of stored organic acids, regardless of anaplerotic bicarbonate fixation by phosphoenolpyruvate carboxylase and the organ considered.

Looking ahead, we also recognize that our modelling exercise disregarded intramolecular isotope compositions. There are important δ^{13} C differences between C-atom positions, including those in organic acids. Unfortunately, there is presently no method implementable routinely to analyze δ^{13} C of organic acids. Typically, using quantitative ¹³C-NMR would require sample preparation to convert COOH groups to their reduced forms (-CH₂OH), break molecular symmetry (for example, in the case of citrate) and block configuration changes and equilibria. To our knowledge, no such method has been published yet. We are trying to deal with this technical challenge which will be the focus of future research aimed at refining our understanding of the isotope signature of CO₂ generated by plant respiration.