$δ^2$ H, $δ^{17}$ O and $δ^{18}$ O variations in condensation water from CH₄ combustion: isotopic tracers and non-mass dependent fractionation?

Mariusz-Orion Jędrysek¹

¹ Laboratory of Isotopic Geology and Geoecology, Department of Applied Geology, University of Wrocław. *Presenting Author Email: mariusz.jedrysek@uwr.edu.pl

 δ^2 H, δ^{17} O and δ^{18} O analyses in condensation water derived from combustion methane in a dynamic open system with excess of oxygen, has been carried out (home condensation gas-fueled boiler). Condensation temperature (Tc) was between 35 and 60°C. Observed variations in δ^2 H value (-142 to -115 ‰), δ^{17} O and δ^{18} O values (-11 to +16 ‰ and +22 to +31 ‰, respectively) were not always relevant to the atomic masses. δ^2 H, δ^{17} O and δ^{18} O show poor correlation with Tc, but usually were higher at lower Tc. This chaotic variations can be resulted from: 1) variations in concentrations and isotopic ratios in atmospheric O₂, the combusted CH₄, atm. water vapor (humidity), 2) formation and loss of the H and O containing compounds e.g. CO₂, CO, NOx, OH, CnHm, solids, 3) kinetic isotopic effects resulted from not complete condensation, 4) non-equilibrium and non-mass depended fractionation (NMDF) especially due to a sudden cooling of the combustion products along the turbulent flow in the open chimney. The observed large scatter of δ^{18} O/ δ^{17} O ratios suggest that the NMDF takes place which does not necessarily depend on Tc.

The weak point is that we did not control any of the above 4 factors. Strong points or added values of this experiment are: 1) apparently a new applications for triple isotopic H₂O (esp.¹⁷O) studies are proposed, and 2) showing a simple method of home-made production of ²H-depeted and ¹⁷O- and ¹⁸O-enriched tracer water, with additional facts that usually there is no linear relations between δ^{17} O and δ^{18} O values. Such unique 3-dimensional water isotopic tracer would be very useful in numerous laboratory experiments (mechanism/balance of chemical reactions, water mixing/migration etc., production of unique lab. standards etc.). Often lab., water isotopic traces are: 1) ²H- and/or ¹⁷O- ¹⁸O-enriched, 2) δ^{2} H, δ^{17} O and δ^{18} O are often parallel to GMWL, 3) expensive. This is not the case in the proposed tracer possible to produce in hundreds of liters at home for free.