Revising the ^{13C}KIE_{OH} and ^DKIE_{OH} values for the CH₄-OH sink

C.-C. Chen^{1*} & T. Röckmann¹

¹ Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, The Netherlands *Presenting Author Email: c.c.chen@uu.nl

Methane (CH₄) plays a critical role in the global carbon cycle and is the second most significant anthropogenic greenhouse gas after CO₂. The current global CH₄ mole fraction is 2.5 times higher than preindustrial levels and its isotopic signatures, δ^{13} C-CH₄ as well as δ D-CH₄, are essential tools for partitioning sources and tracing its atmospheric pathway. However, there is a discrepancy between the simulated and measured values of δ^{13} C-CH₄. A major uncertainty is the isotopic fractionation (kinetic isotope effect, KIE) for the CH₄-OH reaction, which is the primary sink of CH₄ in troposphere. Previous literature reports various KIE values for this reaction, including ^{13C}KIE_{OH} = 1.0054 and 1.0039 as well as ^DKIE_{OH} = 1.294 and 1.25. These differences introduce significant uncertainty in the global CH₄ isotope budget. A better knowledge of KIE values could significantly improve estimates of CH₄ emission sources.

To address this, the aim of this study is to revise the KIE characterization by subjecting CH₄ in laboratory experiments to chemical reactions with hydroxyl radicals (OH·), generated through the photolysis of hydrogen peroxide (H₂O₂) using a deep-UV light source (200-380 nm). The reactions take place in a triple-quartz-layered reactor maintained at stable pressure and temperature conditions. Secondary products are removed using a low-temperature trap. The reactor can be directly coupled to two Isotope Ratio Mass Spectrometers (IRMS), enabling continuous measurements of the δ^{13} C, δ D, and δ^{18} O in remaining CH₄ and CO throughout the photochemical experiments.

References

- [1] Cantrell, Christopher A., et al. "Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical." Journal of Geophysical Research: Atmospheres 95.D13 (1990): 22455-22462.
- [2] Saueressig, Gerd, et al. "Carbon 13 and D kinetic isotope effects in the reactions of CH4 with O (1 D) and OH: new laboratory measurements and their implications for the isotopic composition of stratospheric methane." Journal of Geophysical Research: Atmospheres 106.D19 (2001): 23127-23138.
- [3] Gierczak, Tomasz, et al. "Rate coefficients for the reactions of hydroxyl radicals with methane and deuterated methanes." The Journal of Physical Chemistry A 101.17 (1997): 3125-3134.