The use of $\delta^{13}C$ in CO to determine removal of CH_4 by Cl radicals in the atmosphere

Thomas Röckmann^{1,*}, Maarten van Herpen², Chloe Brashear¹, Carina van der Veen¹, Sergey Gromov³, Qinyi Li⁴, Alfonso Saiz-Lopez⁵, Daphne Meidan⁵, Africa Barreto⁶, Natalia Prats⁶, Ignacio Mármol⁶, Ramón Ramos⁶, Isabel Baños⁷, Jesús M. Arrieta⁷, Sönke Zaehnle⁸, Armin Jordan⁸, Heiko Moossen⁸, Helder Timas⁹, Dickon Young¹⁰, Peter Sperlich¹¹, Rowena Moss¹¹, & Matthew S. Johnson¹²

- ¹ Institute for Marine and Atmospheric Research Utrecht, Department of Physics, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands
- ² Acacia Impact Innovation, 5384 BB Heesch, The Netherlands
- ³ Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
- ⁴ Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China.
- ⁵ Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), 28006 Madrid, Spain
- ⁶ Izaña Atmospheric Research Centre (IARC), State Meteorological Agency of Spain (AEMet), Santa Cruz de Tenerife, Spain
- ⁷ Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz de Tenerife, Spain
- ⁸ Max Planck Institute for Biogeochemistry, Hans-Knöll-Str.10, 07745 Jena, Germany
- ⁹ Instituto Nacional De Meteorologia e Geofísica, Mindelo, São Vicente, Cape Verde
- ¹⁰ School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- ¹¹ National Institute of Water & Atmospheric Research Ltd (NIWA), Hataitai, Wellington 6021, New Zealand
- ¹² Department of Chemistry, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark

*Presenting Author Email: t.roeckmann@uu.nl

The reaction of CH₄ with chlorine (Cl) radicals in the atmosphere is associated with an extraordinarily strong isotopic fractionation, where ¹²CH₄ reacts about 70 ‰ faster with Cl than ¹³CH₄. Therefore, although the Cl-based sink of CH₄ constitutes only a small contribution to its total removal rate, the uncertainty in this small sink has been identified as one of the two largest uncertainties of isotope-based CH₄ source apportionment at the global scale. The uncertainty arises from the fact that Cl levels in the atmosphere are so low that they cannot be detected directly. One very sensitive indirect method to identify and quantify the CH₄ + Cl reaction in the atmosphere is the detection of the extremely ¹³C-depleted reaction product carbon monoxide (CO) from this reaction. This presentation reviews the concept of this approach, its successful application in the atmosphere, its challenges and opportunities for identifying and quantifying Cl-based removal of CH₄ at the regional and global scale and its potential to detect and evaluate possible attempts to enhance CH₄ removal from the atmosphere.