S(IV) is oxidized by O₂, not NO₂, in microdroplets: Triple oxygen isotope evidence

Xiang Sun^{1,2} Wenbo You³, Yu Wei^{1,2}, Hao Yan^{1,2}, Yangyang Liu³, Zimeng Wang³, Liwu Zhang³, Huiming Bao^{1,2}

¹ International Center for Isotope Effects Research (ICIER), Nanjing University, Nanjing 210023, China

² School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China

³ Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China

*Presenting Author Email: xiangsun@smail.nju.edu.cn

The oxidation of sulfur(IV) (S(IV)) by nitrogen dioxide (NO₂) or molecular oxygen (O₂) in atmospheric microdroplets remains a contentious issue, impeding our understanding of sulfur oxidation processes in the atmosphere. O₂, characterized by a small but resolvable negative $\Delta'^{17}O_{0.5305}$ value of -0.50‰, can be incorporated one oxygen atom into sulfate oxygen if indeed O₂ is the oxidant that turns S(IV) into sulfate in microdroplets. We anticipate that the Δ'^{17} O value of the resulting sulfate would be more negative than -0.125‰. However, if NO₂ is the oxidant, all sulfate oxygen should come from ambient water, thus bearing a Δ'^{17} O value more positive than approximately -0.12‰ (changing with the corresponding δ^{18} O value). To test the hypothesis, we conducted chamber experiments by introducing sulfur dioxide (SO₂) into a set of controlled environments containing microdroplets, under conditions of O₂ and/or NO₂, to facilitate the formation of sulfate. The triple oxygen isotope composition of the produced sulfate has the δ^{18} O (sd = 0.2‰) and Δ'^{17} O (sd = 0.02‰) values of 9.4‰ and -0.11‰, respectively, when NO₂ was present. In contrast, when O₂ was present, these values were 9.1‰ and -0.16‰, respectively. Notably, when both NO₂ and O₂ were present, the δ^{18} O and Δ'^{17} O values of sulfate were 11.6‰ and –0.19‰, respectively. These findings demonstrate unmistakably that O₂ oxidizes S(IV) to sulfate in microdroplets.