Oxygen isotope analysis of nano-mole phosphate using PO₃⁻ fragment in ESI-Orbitrap-MS

Zhenfei Wang^{1*}, Yongbo Peng¹, Shohei Hattori¹, Longchen Zhu¹, Zhao Wei¹, & Huiming Bao¹

¹ International Center for Isotope Effects Research, Nanjing University, Nanjing, China *Presenting Author Email: zhenfeiwang@smail.nju.edu.cn

The oxygen isotope composition of phosphate is a useful tool for studying biogeochemical phosphorus cycling. However, the current Ag_3PO_4 method is not only tedious in PO_4^{3-} extraction and purification, but also requires a large-sized sample at the micromole level, thereby limiting its application. Here, we present an approach to measuring the oxygen isotope composition, δ^{18} O, of dissolved phosphate at the nano-mole level using Electrospray Ionization Orbitrap Mass Spectrometry (ESI-Orbitrap-MS). We compared the reproducibility of δ^{18} O measurements using the H₂PO₄⁻ ions (m/z=97 and 99 for H₂P₁₆O₄⁻ and H₂P¹⁸O¹⁶O₃⁻, respectively) and using the PO_{3⁻} fragment ions (m/z=79 and 81 for $P^{16}O_3^-$ and $P^{18}O_3^{16}O_2^-$, respectively) generated by source fragmentation and by Higher-energy Collisional Dissociation, respectively. The results demonstrate that phosphate δ 180 can be more reliably measured by the PO_3^- ions than by the $H_2PO_4^-$ ions. PO_3^- generated by source fragmentation at 40 V achieved the highest reproducibility for δ^{18} O based on precision tests. Furthermore, the mass spectrum for a 50µM:50µM mixed solution of phosphate and sulfate revealed that PO₃⁻ ions resulting from source fragmentation at 40 V are the predominant species in the Orbitrap analyzer. Notably, $P^{16}O_3^{-1}$ ions (m/z: 79) are not interfered with by $^{32}S^{16}O_3$ - (m/z: 80) ions. This is in contrast to $^{1}H_2P^{16}O_4$ - ions, which share the same m/z value with ¹H³²S¹⁶O₄⁻ ions and exhibit much lower signal intensity than HSO₄⁻ ions. Using the PO₃⁻ fragment method and six phosphate standards with a wide range of δ^{18} O values, we obtained a calibration line with a slope of 0.94 ($R^2 = 0.98$). The overall uncertainty for ESI-Orbitrap-MS phosphate δ^{18} O measurement was 0.8‰ (n = 30; 1 SD). With much room for improvement, the PO₃⁻ fragment method presents a better approach to measuring the phosphate oxygen isotope composition, applicable to nano-mole sample sizes in a liquid phase.