Methane flux fingerprint on the bulk and in-situ sulfur isotope systematics of pyrite

Xinyu Jiang¹* Shanggui Gong^{1,2}*, Xudong Wang¹, Yu Hu¹, Qianyong Liang³ & Dong Feng^{1,2}

*Presenting Author Email: xinyu.jiang.china@gmail.com

Sulfate-driven anaerobic oxidation of methane (SD-AOM) is a ubiquitous process in marine sedimentary environments, significantly influencing the redox conditions of the oceans both in present settings and throughout Earth's geological history. Pyrite, a key byproduct of SD-AOM, has sulfur isotopic compositions ($\delta^{34}S_{py}$) that are widely utilized as tracers of the SD-AOM process. However, previous case studies were unable to systematically evaluate the impact of methane flux and sedimentary environment on $\delta^{34}S_{py}$. Here, we developed a 1D model of reaction and transport of sulfur, carbon and iron compounds during sediment diagenesis and explored the relationship between methane flux and $\delta^{34}S_{py}$. Simulation results show that under high methane flux environments, $\delta^{34}S_{py}$ do not exceed the $\delta^{34}S$ value of seawater sulfate ($\delta^{34}S_{SW} = +21.2\%$), and under low methane flux, $\delta^{34}S_{py}$ will exceed $\delta^{34}S_{SW}$.

To verify the model conclusions, we utilized nanoscale secondary ion mass spectrometry (Nano-SIMS) to analyze the δ^{34} S values of authigenic pyrite from two sediment cores (ROV05, DS17) on the northern continental slope of the South China Sea. This analysis was supplemented by measurements of the δ^{34} S values and content of bulk pyrite, the morphology of handpicked pyrite aggregates, and the concentration and sulfur isotopic composition of porewater sulfate (δ^{34} S_{SO4}) and sulfide (δ^{34} S_{H25}). Additionally, we quantified total carbon, total organic carbon, total nitrogen, and total sulfur contents. Our calculations of methane flux indicate that core ROV05 (1.26 mol/m2/yr) exhibits a higher methane flux compared to core DS17 (0.08 mol/m2/yr). In core ROV05, the bulk δ^{34} S_{py} values, Nano-SIMS δ^{34} S_{py} values, and δ^{34} S_{H25} values are all lower than δ^{34} S_{SW} value exceeded in the methane sulfate transition zone (SMTZ). Furthermore, Nano-SIMS analysis reveals that the δ^{34} S_{py} values can surpass δ^{34} S_{SW} value in both current- and paleo-SMTZs.

This study elucidates the compositional characteristics of $\delta^{34}S_{py}$ under varying methane flux conditions, emphasizes the role of sulfate diffusion in porewater on $\delta^{34}S_{py}$ during early diagenesis, and provides a foundation for tracing past methane fluxes.

¹ Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China

² Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao 266237, China

³ MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Guangzhou 510075, China