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Abstract

To elucidate mysterious planet formation, understanding protoplanetary disks is essen-

tial. Especially, turbulence in the disk greatly affects dynamics of solid particles whose

size is from sub-micron to kilometers. Magnetorotaional instability (MRI) is thought

to be the most plausible mechanism generating the vigorous turbulence. However,

although many studies of MRI have addressed the turbulence strength, the strength

remains debatable mainly because of the uncertainty of MRI in the low ionization frac-

tion. Thus, the role of MRI in planet formation is still a puzzle.

So far we have investigated the effect of electron heating on protoplanetary disks. The

electron heating takes place when the electric field induced by the magnetic turbulence

heats up electrons. The heated electrons frequently collide with and stick to dust grains,

which in turn decreases the ionization fraction. MRI is stabilized under the sufficiently

low ionization faction, which indicates high resistivity. Our previous work showed

that the electron heating might quench the magnetic turbulence in extensive regions.

However, how much the electron heating suppresses the turbulence is unknown.

To answer the question, we first numerically investigate the effect of electron heating

on the nonlinear evolution of MRI. We perform magnetohydrodynamical simulations

including increase of resistivity by electron heating. We introduce a simple analytic

resistivity model that enables us to treat the increasing resistivity.

Our simulations confirm the electron heating suppresses magnetic turbulence. We find

a clear relation between magnetic turbulence strength and its current density. This

relation means that a lower current leads to lower turbulence strength.. We find that

when turbulence completely dies away, laminar accretion flow is caused by ordered

magnetic field. By solving the dispersion relation, we find an analytical expression of

the laminar state that exactly gives the physical quantities. Based on the simulation

results and the scaling relation between the accretion stress and current density, we

obtain a formula that successfully predicts the accretion stress in the presence of electron

heating once current density is given. In a protoplanetary disk, the current density can

be estimated by using the current-dependent resistivity and the saturated resistivity.

Thus, we can predict the accretion stress in extensive regions where the electron heating

occur. This helps us to construct realistic planet formation theory.

The simulations presented in this thesis are based on the simple resistivity model. In

future work, we will employ the more realistic resistivity model.





Contents

1 Introduction 5

2 Background 11

2.1 Magnetohydrodynamics (MHD) and Magnetorotaional Instability (MRI) 11

2.1.1 Ideal MHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Linear Stability Analysis of MRI . . . . . . . . . . . . . . . . . 17

2.1.3 Nonideal MHD Effects . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Nonlinear Ohm’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Outline of Calculation . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Plasma Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Charge Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Electron Heating Zone : Mori & Okuzumi (2016) 31

3.1 Disk and Ionization Models . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Disk Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Simplified Plasma Heating Model . . . . . . . . . . . . . . . . . 34

3.1.3 Ionization Balance and Accuracy of Simplified Approach . . . . 37

3.2 Active, Dead, and E-heating Zone . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Conditions for MRI Growth . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Zoning Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Location of the E-heating Zone . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Fiducial Disk Model . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Dependence on the Magnetic Field Strength . . . . . . . . . . . 47

3.3.3 Dependence on the Grain Size and Dust-to-Gas Mass Ratio . . 47

3



4 CONTENTS

3.3.4 Dependence on the Disk Mass . . . . . . . . . . . . . . . . . . . 49

3.3.5 Ion Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Saturation of Turbulence in the E-heating Zone . . . . . . . . . . . . . 51

3.5 Charge Barrier against Dust Growth in the E-heating Zone . . . . . . . 54

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.1 Dust Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.2 Effects of Grain Size Distribution and Porosity . . . . . . . . . . 61

3.6.3 Hall Effect and Ambipolar Diffusion . . . . . . . . . . . . . . . . 62

4 Suppression of MRI by the Electron Heating 65

4.1 Numerical Setup and Procedure . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Results of Shearing-Box MHD Simulations . . . . . . . . . . . . . . . . 72

4.3 Predictive Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Scaling Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.2 Analytical Solution of Laminar State . . . . . . . . . . . . . . . 83

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Vertical Diffusion of Dust . . . . . . . . . . . . . . . . . . . . . 88

4.4.2 Weak Disk Turbulence Suggested by Recent Observations . . . . 89

5 Summary and Conclusion 93

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A Appendix 105

A.1 Time Evolution of Simulation Results . . . . . . . . . . . . . . . . . . . 105



Chapter 1

Introduction

Many exoplanets have been discovered since Mayor & Queloz have discovered the first

exoplanet. At October 28, 2016, 2049 exoplanets including candidates have been found

(http://exoplanet.eu). As exoplanets had been discovered, the diversity of exoplan-

ets was revealed. The first exoplanet is a typical jupiter-like planet. However, the

discovery was surprised because the planet is much closer to the central star than re-

searchers had expected, and thus such planets are called a hot jupiter. In addition, hot

Neptune, a neptune-like planet orbiting close to the central star, and a super earth,

which consists mainly of rock but has too larger mass than the Earth, were discov-

ered.

Although many exoplanets have been discovered, how the diversity of exoplanets orig-

inates is vague. In order to understand the diversity, the process of planet formation

have to be revealed. Planets forms in protoplanetary disks consisting of gas and dust.

The outline of dust coagulation model of classical planet formation theory is the fol-

lowing. First of all interstellar molecular cloud collapses with own self-gravity in the

star formation region, and then a protester and a disk surrounding the star are formed.

In the disk, the dust particles grow via collisions and sticking. The micron sized dust

particles grow up into planetesimals of which size is approximately 1 km. After the

disk disperses owing to accretion into the central star, a system of the protoplanet be-

come unstable, and then their orbit cross. Via the impacts between protoplanets, they

become rocky planets. When mass of protoplanets excesses a critical mass, gas in the
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disk accrete into the protoplanet, and then the gas planet is formed.

However, the classical scenario has serious difficulties in the formation of planetesimals

from dust particles. One of the dificulties is the “meter size barrier”. When dust

particles aerodynamically coupling with the gas grows into meter size rocks, the dust

particles feel a headwind and drift radially inward because of the gas drag. The infall

time scale is the order of 102 years (Adachi et al., 1976; Weidenschilling, 1977). Thus,

the most solid particles fall into the central star before they grow up into planetesimals.

Moreover, the turbulence in the disk significantly hinders also the growth of meter size

rocks. The disk turbulence excites the relative velocity of dust particles. Although the

increase of collisional frequency leads to the rapid growth under the perfect sticking,

but when the collisional speed is higher than several cm/s, the silicate solid particles

bounce or disrupt (Blum & Wurm, 2008; Zsom et al., 2010).

The other classical planet formation scenario using gravitational instability is recognized

as a way to avoid the meter size barrier (Safronov, 1969; Goldreich & Ward, 1973). If

the disk turbulence absent, the dust particles settles on the midplane and forms a dust

layer. When dust density sufficiently increases, the self-gravitational instability of the

dust layer occurs, and eventually planetesimals forms. However, dust layers do not form

in the turbulent because the disk turbulence stir up the dust layer (Weidenschilling &

Cuzzi, 1993). Thus, from the dust coagulation model, in order to build a successful

planet formation model, the disk turbulence should be more specified.

Magnetorotational instability (MRI; Balbus & Hawley, 1991), which is an instability

between magnetic fields and ionized gas, is thought to be a most plausible mechanism of

generating the disk turbulence. If the MRI grows, the vigorous magnetic turbulence is

generated with complex magnetic fields (e.g., Hawley et al., 1995). The magnetic fields

lead to Maxwell stress, an accretion stress which is caused by the magnetic tension.

Maxwell stress of vigorous MRI turbulence provides an effective disk viscosity that

allows the disk lifetime consistent with disk observations (Hawley et al., 1995; Fromang

& Nelson, 2006; Simon et al., 2009; Flock et al., 2011). In the fully developed MRI

turbulence, the kinetic energy of the turbulence is also enough high to prevent dust

settling (Carballido et al., 2005) and disrupt particles by collisions (Carballido et al.,

2010).
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Since MRI turbulence greatly affects both the disk evolution and planet formation, the

MRI has been studied long time, but the role of MRI in protoplanetary disks is still not

obvious. The awkward problem is that MRI closely links to the ionization fraction of

the disk. Since thermal ionization is relevant only close to the central star (Umebayashi,

1983), the dominant part of the disks is ionized only by high-energy sources such as

stellar X-rays (Glassgold et al., 1997) and galactic cosmic rays (Umebayashi & Nakano,

1981). Deep inside the disks, the ionization fraction is significantly low because these

ionizing radiations are attenuated and because recombination proceeds fast. The low

ionization fraction gives rise to fast Ohmic dissipation that stabilizes the MRI (Sano

& Miyama, 1999). Such a region is called the“ dead zone” (Gammie, 1996; Sano

et al., 2000). The MRI is also suppressed by ambipolar diffusion near the surface of the

disks (Desch, 2004; Bai & Stone, 2011; Dzyurkevich et al., 2013). The Hall effect can

either stabilize or destabilize the MRI depending on the orientation of the magnetic

field relative to the disk rotation axis (Wardle, 1999; Wardle & Salmeron, 2012; Bai,

2014). Thus, activity of MRI in the disks is closely linked to ionization fraction and its

distribution.

All the previous studies of MRI had neglected the ionization process caused by MRI

itself until Inutsuka & Sano (2005) investigated the possibility of ionization by electric

field in MRI turbulence with a simple estimation. They found heating of electron by

electric fields in MRI turbulence, which is called the “electron heating” and focused

in our work. The heating mechanism is the following. The vigorous MRI turbulence

generates strong electric fields associated with the growth of magnetic fields. Plasma

particles are accelerated by the strong electric fields and are scattered isotropically by

collisions with neutral gas particles, leading to increase of their thermal velocity. In

particular, electrons are more easily heated compared to ions because light particles are

easily scattered. Therefore, the sufficiently developed electric fields of MRI turbulence

increase electron temperature in a weakly ionized gas. The heated electrons can become

sufficiently high temperature for collisional ionization, which is known as a phenomenon

of electron discharge. If this process works, MRI turbulence sustains (Muranushi et al.,

2012).

However, the estimation does not consider balance between ionization and recombi-
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nation. Okuzumi & Inutsuka (2015, henceforth OI15) investigated ionization balance

varying electric field strength. They found reduction of ionization fraction by heated

electrons sticking to dust grains before the collisional ionization occurs. The heated

electrons frequently collide with and stick to dust grains. As a result, the electron

heating decreases the ionization fraction. They also suggested that a region where MRI

is suppressed enlarges in the dusty disk.

Our previous work (Mori & Okuzumi, 2016, henceforce MO16) investigated where the

electron heating takes place and, moreover, might suppress MRI. We found the electron

heating occurs in large regions of protoplanetary disks, which is called “e-heating zone.”

Especially, because the region locates outside the dead zones, electron heating would

effectively enlarge dead zones. In addition, we estimated the strength of magnetic

turbulence in e-heating zones with a simple scaling relation between the Maxwell stress

and current density. In e-heating zone, the current density was suggested to be much

less than that in fully developed MRI turbulence. Thus, the previous concluded that

electron heating would suppress the MRI turbulence. However, the existence of the

scaling relation is not clear because many previous studies have not focused the relation

of current density to the Maxwell stress. Moreover, the estimation has assumed a

current density where MRI is saturated. Thus, actually, the possibility of suppressing

MRI by electron heating has been debatable.

In this work, we first investigate the effect of electron heating on the nonlinear evolution

of MRI using local three-dimensional MHD simulations. The goal in this work is to

show the clear relation between the Maxwell stress and current density and, moreover,

to demonstrate the potential of electron heating to greatly suppress MRI . We introduce

a resistivity model in which resistivity increases with electric field strength in order to

mimic the realistic resistivity of electron heating. If the stress-current relation exists, it

appears by varying parameters of current density which begin to cause electron heating

to show the relation.

We denote the following contents with the following order. In Section 2, we present

some fundamental background. The mechanism of MRI and electron heating is included

there. In Section 3, we present our previous study investigating e-heating zone. The

study also describes the implication for dust dynamics. In Section 4, we experimentally
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investigate the effect of electron heating on the magnetic turbulence by performing

MHD simulations including the increase of resistivity. Finally, in Section 5, we present

the summary and conclusion. We also present the future work. In this work, we do not

use consistent notation occasionally. Thus, we define every variables in each chapter

for clarity.





Chapter 2

Background

2.1 Magnetohydrodynamics (MHD) andMagnetoro-

taional Instability (MRI)

In this section, we briefly denote the fundamentals of magnetohydrodynamics (MHD)

and magnetorotational instability (MRI), with referring to Chen (1977) and Johansen

(2009). Magnetorotational instability (MRI) is an instability which takes place in dif-

ferentially rotating ionized disk. MRI is the most plausible mechanism of driving mass

accretion by turbulent viscosity in protoplanetary disks. MRI, which is first discov-

ered in the context of general accretion disks by Velikhov (1959), is rediscovered in the

context of protoplanetary disks by Balbus & Hawley (1991).

2.1.1 Ideal MHD

MHD deals with a motion of ionized gas holding a magnetic field, by solving the equa-

tions of both the fluid and field. In magnetic fields, neutral gas particles receives a force

via collisions with ionized particles which receives the Lorentz force from the fields. Con-

versely, magnetic fields is affected by the motion of ionized gas as contribution of the

current density. An electric conductivity, which is an important physical quantity in

MHD, express the ease with which electric current flows thorough a medium. MHD

based on a limit that the electric conductivity reaches to infinity is called “ideal MHD”.

11
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In this subsection, we describe in the ideal MHD for first understanding of MRI. In this

pager, we consistently adopt the Gaussian-cgs units and write magnetic flux density as

magnetic fields.

Fundamental Equations

In protoplanetary disks, contribution of molecular viscosity is much less than of induc-

tion and thereby is negligible 1. It allows us to use the Euler equation, which neglects

the viscosity term in the Navier-Stokes equation, to express the motion of equation of

fluid. In MHD, the fluid receives a force from an electromagnetic field in addition to

gravity and pressure-gradient force. The electromagnetic force in an electric field E

and a magnetic field B per unit volume is generally written as

FE.M. = ρeE +
1

c
J ×B, (2.3)

where c is light speed, ρe ≡
∑

α qαnα is electric charge density, and J ≡ qαnαuα is

current density. Under the first MHD approximation, which holds in an electrically

neutral state , the first term is neglected. Thus, we have a equation of motion of MHD

fluid,
∂u

∂t
+ (u · ∇)u = −1

ρ
∇P − GM∗

r2
eR +

1

ρc
(J ×B) (2.4)

where u is the fluid velocity, P is the gas pressure, eR is the radial unit vector of

cylindrical coordinate system.

1A ratio of the advection term to the diffusion term of molecular viscosity is approximately written
as

(v · ∇)v

νmol∆v
≈ Lv

νmol
= Re, (2.1)

where νmol, v, and L are , respectively, the molecular viscosity, fluid velocity, and scale length. The
value is called Reynolds number Re. To estimate the typical value, we take νmol = cs/nnσnn, L = H,
and v = cs, and then

Re =
csnnσnn

Ω
= 1012

(
T

280K

)−1/2 ( nn

1015 cm−3

)( r

1AU

)−3/2

(2.2)

where we take σnn = 10−15 cm2. That’s why the typical value in protoplanetary disks is much larger
than unity and thereby viscosity term can be neglected.
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The equation of continuity is written as

∂ρ

∂t
+ (u · ∇)ρ = −ρ ∇ · u. (2.5)

Assuming the isothermal change, we express the equation of state as,

P = c2sρ. (2.6)

In the MHD equations, the evolution equation of a magnetic field, the induction equa-

tion, should be solved. The Maxwell-Faraday equation is

∂B

∂t
= −c∇×E, (2.7)

which express the time evolution of magnetic fields. The relation between an electric

field and current density, which is called “the Ohm’s law”, in a comoving frame (which

moves with fluid) is written as

J ′ = σcE
′ (2.8)

where we express an electric conductivity as σc and values in the comoving frame with

the superscript “ ’ ” only in this section. Under the Lorentz transformation in u ≪ c,

E′ and J ′ are related with E and J as

E′ = E +
1

c
u×B, (2.9)

J ′ = J . (2.10)

Using Equations (2.7), (2.8), (2.9), and (2.10), we obtain

∂B

∂t
= −c∇×

(
J

σc

− 1

c
u×B

)
. (2.11)

Under the ideal MHD approximation which means σc → ∞, we obtain the induction

equation in ideal MHD,
∂B

∂t
= ∇× (u×B). (2.12)

Maxwell equations except for the Faraday’s equation include Gauss’ equation, equation
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of conservation of magnetic flux, and Maxwell-Ampére equation, respectively,

∇ ·E = 4πρe, (2.13)

∇ ·B = 0, (2.14)

4πJ +
∂E

∂t
= c∇×B. (2.15)

Under the second MHD approximation, which holds when variation of electric fields

is small, the displacement current term is dropped, and then we obtain the Ampére’s

equation,

4πJ = c∇×B (2.16)

Usually, when the fluid velocity is much less than the speed of light 2 , the approximation

is justified.

The force in Euler’s equation 2.4 is transformed, using Ampére ’s equation (2.16),

into

1

c
J ×B =

1

4π
((∇×B)×B) , (2.19)

=
1

4π
(B · ∇)B −∇

(
B2

8π

)
, (2.20)

where the first term is called the magnetic tension while the second is called the magnetic

pressure. The importance of the magnetic force 3 represents a non dimensional number,

plasma beta which is defined by the ratio of gas pressure to magnetic pressure as

β =
8πP

B2
. (2.21)

2Let us derive the approximation condition from comparing two terms. The condition is approxi-
mately written as

E

T
≪ c

B

L
. (2.17)

Using approximated Maxwell-Faraday Equation (2.7), B/T = cE/L, the equation can be translated
into

L2

T 2
≪ c2. (2.18)

That’s why when the representative-velocity scale, which is fluid velocity in many cases of MHD, is
much less than light speed, we can neglect the term.

3Strictly speaking, the value expresses the unimportance of the magnetic force.
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The transformation leads to the equation of motion of MHD,

∂u

∂t
+ (u · ∇)u = −1

ρ
∇P − GM∗

r2
eR +

1

4πρ
(B · ∇)B − 1

ρ
∇
(
B2

8π

)
(2.22)

In summary, the system of equation of MHD consists of Equations (2.4), (2.5), (2.6),

(2.12), and (2.16). This system does not explicitly include the electric fields E because

the infinite current streams because of the infinite conductivity and then the fields

disappeares.

Ohm’s Law

Here we denote the electric conductivity σc in Ohm’s law (2.8). In this work, we derive

the Ohm’s law in the comoving frame, but note that it is not necessarily and some books

or papers is written in the rest frame. The reason that we adopt the comoving frame

is to simply derive the nonlinear Ohm’s law which we will denote in Section 2.2.

In the comoving frame, the current density is expressed from the definition,

J ′ ≡
∑
α

qαnα ⟨vα⟩′ , (2.23)

where ⟨vα⟩′ is the mean velocity of α-particles. ⟨vα⟩′ is derived by the kinetics as

follows. When the charged particles having mass mα and charge qα receive the electric

force in the electric field E’ and then accelerate into ⟨vα⟩′ during mean collisional time

∆tα, using the approximated equation of motion mα ⟨vα⟩′ /∆tα = qαE
′ ,the velocity is

expressed as

⟨vα⟩′ =
qαE

′∆tα
mα

. (2.24)

Substitution for ⟨vα⟩′ into Equation (2.23) leads to

J ′ =

(∑
α

q2αnα∆tα
mα

)
E′ = σcE

′. (2.25)

The equation in the parenthesis is the electric conductivity σc. As is evident from the

equation, σc is proportional to nα∆tα (= nα/(nn ⟨σαnvαn⟩)). Therefore, we can say that
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the ideal MHD approximation means the limit of the ionization fraction nα/nn.

σc is commonly treated as constant, but, strictly speaking, that is just assumption.

Okuzumi & Inutsuka (2015) get rid of the assumption and focus that the ionization

balance can be changed when electric fields are strong. The more detail is described in

Section 2.2.

Alfvén Velocity

Here we denote the Alfvén velocity which is the propagation speed of a magnetic field

displacement. Let us consider the propagation of the displacement B1 in the uniform

magnetic field B0(= B0ez) with zero initial velocity (u0 = 0). Moreover, for simplicity,

we assume constant density, which leads to no pressure gradient(∇P = 0) and incom-

pressible fluid(∇·u = 0), and B1 to be perpendicular to B0, B1 = B1xex+B1yey. The

equation of motion can be written as

∂u1

∂t
= − 1

4πρ
(B0 × (∇×B1)) ,

=
1

4πρ
(B0∇zB1) , (2.26)

which have been derived from Equation (2.19). The induction equation is written

as

∂B1

∂t
= ∇× (u1 ×B0),

= (B0 · ∇)u1 −B0(∇ · u1),

= B0∇zu1. (2.27)

We then have the wave equation of B1 toward the z-direction,

∂2B1

∂t2
= B0∇z

(
1

4πρ
B0∇zB1

)
,

=
B2

0

4πρ

∂2

∂z2
B1. (2.28)
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This equation expresses that the magnetic displacement is propagated with a veloc-

ity

vA =
B0√
4πρ

, (2.29)

which is called “Alfvén velocity.”

2.1.2 Linear Stability Analysis of MRI

MRI appears by the linear stability analysis of ideal MHD in differentially rotating

disks in magnetic fields.

Let us consider the Kepler disk in the presence of an initially uniform magnetic field in

z direction (B0 = (0, 0, B0)). The angular velocity Ω at a distance r from the central

star is expressed as

Ω(r) =

√
GM∗

r3
. (2.30)

In the cylindrical coordinate (r, ϕ, z), the equation of motion is written as

∂ur

∂t
−

u2
ϕ

r
+ (u · ∇)ur = −1

ρ

∂P

∂r
− GM∗

r2
er+

1

ρc
(J ×B)r, (2.31a)

∂uϕ

∂t
+

uruϕ

r
+ (u · ∇)uϕ = − 1

ρr

∂P

∂ϕ
+

1

ρc
(J ×B)ϕ, (2.31b)

∂uz

∂t
+ (u · ∇)uz = −1

ρ

∂P

∂z
− GM∗

r2
ez+

1

ρc
(J ×B)z. (2.31c)

Local Shearing Sheet Approximation

Some proper approximations help to simply derive the linear stability analysis of MRI.

Here let us adopt the local coordinate (x, y, z), where x-axis is toward r-axis and y

is perpendicular to x. The coordinate rotates with the angular velocity Ω0 = Ω(r0),

where r0 is the center of the coordinate and much larger than x and y, r0 ≪ x and

r0 ≪ y. x and y are, respectively, expressed as

(x, y) = (r − r0, r0(ϕ− Ω0t)), (2.32)
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x!

y!

r0!

Ω0!

Central Star 

Local Sharing Box 

Figure 2.1: Schematic diagram expressing the local sharing coordinate. The origin
is located at a distance r0 from the central star and rotates with an angular velocity
Ω(r0). In differentially rotating disks, an observer in the coordinate observes a shear
flow.

and the velocity in the local coordinate, (ux, uy), is related to the one in the cylindrical

coordinate, (ur, uϕ), as

(ux, uy) = (ur, r0 (Ω(r)− Ω0)) . (2.33)

where Ω(r) = ∂ϕ
∂t
. To know the background velocity field (unperturbed velocity) in the

local coordinate, we consider the steady flow and then have the velocity field,

(ux,steady, uy,steady) =

(
0,−3

2
Ω0x

)
, (2.34)

where we use

Ω(r0 + x)− Ω(r0) =

√
GM∗

r30

(
1 +

x

r0

)−3/2

− Ω(r0)

≈ Ω0

(
1− 3

2

x

r0

)
− Ω(r0)

≈ −3

2
Ω0

x

r0
. (2.35)
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The tidal force (a centrifugal force−−a gravitational force) in Equation (2.31a) can be

written as

u2
ϕ

r
− GM∗

r2
= (r0 + x)

(
∂ϕ

∂t

)2

− GM∗

(r0 + x)2

= (r0 + x)

(
uy

r0
+ Ω0

)2

− GM∗

r20

(
1 +

x

r0

)−2

≈ r0(1 +
x

r0
)

(
Ω2

0 + 2
uyΩ0

r0

)
− r0Ω

2
0

(
1− 2

x

r0

)
≈ 3Ω2

0x+ 2uyΩ0, (2.36)

while
∂uϕ

∂t
can be written as

∂uϕ

∂t
=

∂

∂t

(
r

(
uy

r0
+ Ω0

))
=

uxuy

r0
+ uxΩ0 +

r

r0

∂uy

∂t

≈ uxΩ0 +
∂uy

∂t
. (2.37)

uruϕ/r can be written as

uruϕ

r
= ux

(
uy

r0
+ Ω0

)
≈ uxΩ0. (2.38)

For the simplicity of the derivation, we here use the shearing sheet approximation which

neglects the vertical velocity and the equation of motion with respect to z direction.

In addition, we impose the incompressibility, ρ = ρ0(constant), and isothermality, cs =

constant, and then also have P = constant. Thus, we obtain the equations to be solved,

∂ux

∂t
+ (u · ∇)ux = 2Ω0uy + 3Ω2

0x+
1

ρc
(J ×B)x, (2.39a)

∂uy

∂t
+ (u · ∇)uy = −2Ω0ux +

1

ρc
(J ×B)y, (2.39b)

∂B

∂t
+ (u · ∇)B = (B · ∇)u , (2.39c)
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where we use ∇ · u = 0.

To investigate the growth of given perturbations, we perform a linear stability analysis.

We express values as a sum of the unperturbed value and perturbed value, and then

transform the above equations into the ones of the first-order vales. We consider that

the unperturbed magnetic field is vertically uniform and the perturbed magnetic field

is only perpendicular to z direction. The values are expressed as

ux = ux1 , (2.40a)

uy = −3

2
Ω0x+ uy1 , (2.40b)

Bx = Bx1 , (2.40c)

By = By1 , (2.40d)

Bz = B0, (2.40e)

J =
1

4πc
∇×B1 = J1 . (2.40f)

Using these equations and neglecting the second-order values, we obtain

∂ux1

∂t
= 2Ω0uy1 +

1

ρ0c
(J1 ×B0)x (2.41a)

∂uy1

∂t
− 3

2
Ω0ux1 = −2Ω0ux1 +

1

ρ0c
(J1 ×B0)y (2.41b)

∂Bx1

∂t
= B0

∂ux1

∂z
(2.41c)

∂By1

∂t
= B0

∂uy1

∂z
+Bx1

(
−3

2
Ω0

)
. (2.41d)

The Lorentz force can be written as

1

ρ0c
(J ′ ×B0) =

1

ρ0c

(( c

4π
∇×B1

)
×B0

)
=

1

4πρ0
((B0 · ∇)B1 −∇ (B0 ·B1))

=
1

4πρ0
B0

∂B1

∂z
. (2.42)
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Thus, we obtain

∂ux1

∂t
= 2Ω0uy1 +

B0

4πρ0

∂Bx1

∂z
(2.43a)

∂uy1

∂t
= −1

2
Ω0ux1 +

B0

4πρ0

∂By1

∂z
(2.43b)

∂Bx1

∂t
= B0

∂ux1

∂z
(2.43c)

∂By1

∂t
= B0

∂uy1

∂z
− 3

2
Ω0Bx1. (2.43d)

Let us investigate an unstable mode in z direction, kz, by the Fourier analysis. The any

given perturbation can be expressed by a superposition of plane waves. We assume an

arbitrary perturbed value q1 to be

q1 ∝ exp [i(kzz − ωt)]. (2.44)

Thus, we obtain

−iωux1 = 2Ω0uy1 + ikz
B0

4πρ0
Bx1 (2.45a)

−iωuy1 = −1

2
Ω0ux1 + ikz

B0

4πρ0
By1 (2.45b)

−iωBx1 = ikzB0ux1 (2.45c)

−iωBy1 = ikzB0uy1 −
3

2
Ω0Bx1. (2.45d)

Thus, by arranging this equations, we obtain the dispersion relation with respect to

kz,

ω4 − 2ω2(2v2Ak
2
z + Ω2

0) + v2Ak
2
z(v

2
Ak

2
z − 3Ω2

0) = 0. (2.46)

Equation (2.46) can be easily solved. Finally, we obtain the solution of the dispersion

relation,

ω2
±

Ω2
0

=
v2Ak

2
z

Ω2
0

+
1

2
±

√
4
v2Ak

2
z

Ω2
0

+
1

4
(2.47)

In Figure 2.2, we plot ω2 as a function of kz. Since ω is given in Equation (2.44),

the perturbation is unstable when ω2(kz) < 0 , while the perturbation is stable when
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Figure 2.2: Dispersion relation of MRI in ideal MHD. The frequency in the vertical
axis is normalized by Ω0, and the perturbation wavenumber in the horizontal axis is
normalized by Ω0/vA. Blue line shows ω2

−/Ω
2
0, and red line ω2

+/Ω
2
0. When ω2 < 0, the

perturbation is unstable, while when ω2 > 0, the perturbation is stable and propagate
as a MHD wave.

ω2(kz) > 0. Thus, the unstable wave number is

0 < kz <
√
3Ω0/vA, (2.48)

where
√
3Ω0/vA is the largest wavenumber in the wavenumber which trigger MRI. The

shortest unstable wavelength λcrit which corresponds to the largest unstable wavenum-

ber is

λ = 2π
vA√
3Ω0

. (2.49)

The unstable wavelength in which MRI growth is fastest is the one of min(ω2), and

thereby we obtain the most unstable growth rate,

λ = 2π

√
16

15

vA
Ω0

(2.50)

when the wavelength is the most unstable wavelength,

Im(ω)max =
3

4
Ω0. (2.51)

The timescale of MRI growth is∼ 1/Ω0. This means that the instability grows during an

orbital period, and the growth rate is relatively fast in global effects of protoplanetary



2.1. MAGNETOHYDRODYNAMICS (MHD) ANDMAGNETOROTAIONAL INSTABILITY (MRI)23

disks. Moreover, in ideal MHD, the growth rate does note depend on the vertical

magnetic field strength. In other words, MRI would appear even if the initial magnetic

fields is very weak. That’s why it has been thought that MRI should play an important

role in protoplanetary disks.

2.1.3 Nonideal MHD Effects

Ideal MHD approximation assumes infinite conductivity, whereas “nonideal MHD” have

finite conductivity.

In nonideal MHD, using Equations (2.16) and (2.14), the induction equation is expressed

as

∂B

∂t
= ∇× (u×B)− c2

4πσc

∇× (∇×B)

= ∇× (u×B)− c2

4πσc

(∇(∇ ·B)−∇2B)

= ∇× (u×B) + η∇2B, (2.52)

where η is magnetic resistivity which is related to electric conductivity as

η =
c2

4πσc

. (2.53)

The right-hand side first term in Equation (2.52) , which is the same as in ideal MHD,

expresses the amplification of magnetic fields by gas motion coupling with the fields.

The second term expresses the diffusion of magnetic fields. When the first term is

negligible, the equation is expressed as a diffusion equation. Therefore, when η is

effective, the magnetic fields grow slowly or decrease. Thus the dissipation of magnetic

field by high resistivity or low conductivity is called the ohmic dissipation.

We can obtain a criterion which expresses whether the magnetic field is induced or

diffused, by taking a ratio of the induction term in Equation (2.52) to the diffusion

term. If we consider partial derivatives to be the most unstable wavenumber Ω/vA and

characteristic velocity to be vA, we obtain the criterion, which is called the Elsasser
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number Λ,

Λ =
|∇ × (u×B)|

η∇2B
∼ v2A

ηΩ
. (2.54)

When Λ ≫ 1, the ohmic dissipation is negligible and thereby we can assume ideal

MHD. In contrast, when Λ ≲ 1, the ohmic dissipation is not negligible and thereby we

should consider nonideal MHD.

2.2 Nonlinear Ohm’s Law

In this subsection, we summarize the nonlinear Ohm’s law in OI15. The nonlinear

Ohm’s law is a relation between electric field and current density including heating

of electron by strong electric field. So far, previous studies assumes that electric con-

ductivity (electric resistivity) does not depend on the electric field strength. However,

actually, MRI turbulence generates strong electric field after besides magnetic field

growth. Thus, the possibility that the electric field heat up electrons was suggested in

Inutsuka & Sano (2005). After that, in weakly ionized gas including dust, Okuzumi &

Inutsuka (2015) found that an increase of electron energy leads to increase of electron’s

dust adsorption rate. Since the reduction rate of electron abundance is increased, the

electron abundance is decreased in a gas-phase. Thus, the conductivity depend on the

electric field because electric conductivity depends on the ionization fraction. For MRI

to grow, the ionization fraction should be sufficiently high (see Section 2.1.3). Thus,

because MRI might be suppressed if this effect sufficiently work, this effect will be

important.

2.2.1 Outline of Calculation

Here, we present the outline of derivation of the nonlinear Ohm’s law. The keys of

the nonlinear Ohm’s law are heating of electron by electric field and the the ionization

balance. In electric fields, electron velocity distribution is changed from the thermal

velocity distribution, Maxwell distribution. The change of the velocity distribution

leads to change mean drift velocity ⟨vα⟩ and mean energy ⟨ϵα⟩ of plasma particles

in turn. Because the mean plasma energy is closely related to ionization fraction,
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Figure 2.3: Sketch of the derivation procedure and the charge reaction model presented
in OI15. The model gives the electric current density J as a function of the electric
field strength E. The plasma velocity distribution functions fe and fi take into account
heating by the electric field, and therefore the resulting J is nonlinear in E.

ionization balance is affected and therefore number density of plasma particle nα is

changed. Current density is defined as J =
∑

α=e,i qαnα ⟨vα⟩, where q is charge and α

express a value of plasma particle. Thus, current density including dependence of the

conductivity on electric fields can be calculated, and then the relation between electric

fields and current density is obtained.

The order of the derivation is as follows:

1. Calculate electron and ion velocity distribution function fe and fi.

2. From the velocity distribution, calculate electron and ion mean velocity, ⟨ve⟩ and

⟨vi⟩, and mean energy ,⟨ϵe⟩ and ⟨ϵi⟩.

3. Calculate electron and ion number density, ne and ni, from ionization balance.

4. Obtain the J–E relation from J =
∑

α qαnα ⟨vα⟩.

We show the schematic diagram of the derivation procedure in Figure 2.3. In their

paper, they focus also a collisional ionization of electrons by strong electric field besides

dust adsorption. However, because our work focus the nonlinearity by dust adsorption of

heated electron, we does not treat the collisional ionization here. In addition, because

the collisional ionization occurs in E ∼ 103Ecrit, the neglecting it is reasonable in

E ≲ 102Ecrit. Actually, as we see Section 3.2 of our work, we confirm the electric fields

does not increase so much in a large region of the disk.
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2.2.2 Plasma Heating

Here we briefly present a derivation of heating of plasma particles by electric field

(plasma heating) in OI15.

A mean velocity ⟨vα⟩ and energy ⟨ϵα⟩ of charged particles having a velocity distribution

function fα is expressed as

⟨vα⟩ =
∫

vαfα(E,vα) d
3vα, (2.55)

⟨ϵα⟩ =
∫

ϵαfα(E,vα) d
3vα. (2.56)

where ϵα = mαv
2
α/2. Using ⟨ϵα⟩, the temperature of charged particles is defined as

⟨ϵα⟩ ≡ 3kBTα/2 when the random (thermal) energy dominates the kinetic energy.

The kinetic energy of electrons exceeds the one of neutral particles when electric field

strength exceeds the threshold Ecrit, (Landau & Lifshitz, 1953),

Ecrit =

√
6me

mn

kBT

ele
, (2.57)

where me and mi are, respectively, the mass of electron and neutral particles, kB is the

Boltzmann constant, T is the neutral gas temperature, e is the elementary charge, and

le is the mean free path of electron.

The velocity distribution function of electrons depending on electric field strength is

derived by Davydov (1935). OI15 used the distribution although here the specific

formula is skipped for simplicity. Figure 2.4 shows the E dependent energy distribution

of electrons in the case of E = 0 and 100Ecrit. When E ≈ 0, the energy distribution

is approximately the Maxwell distribution. From E = 0 to 100Ecrit, the top of the

energy distribution which corresponds to ⟨ϵe⟩ shifted to the right. Thus, electric field

increases the mean kinetic energy. The velocity distribution function of ions fi are

approximately expressed as a Maxwell distribution that is shifted by ion mean drift

energymi ⟨vi⟩2 /2 (Hershey, 1939). The drifted velocity can be derived from the kinetics

(e.g., see Appendix in OI15).

Figure 2.5 shows the dependence of electron and ion mean energy on electric field
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Neutral Gas (n)

Electrons (e) Positive Ions (i)

External Ionization
(CR, XR,...)

Gas-phase
Recombination

Adsorption
E-Field

Field-Induced
Impact Ionization

Dust Grains (d)

Adsorption

Electric field strength  E

Velocity distributions  fi, fe

Charge balance 
{ni, ne, Znd}

Drift velocities
 <vi||>, <ve||>

Current density   J = eni<vi||> - ene<ve||> 

Figure 1. Sketch of the charge reaction model adopted in this study. We consider a weakly ionized gas with charged dust grains and with an applied (external)
electric field. The applied field heats up the charged gas particles and thereby modifies their velocity distribution functions. The charge reactions involved are
external ionization (by, e.g., cosmic rays), gas-phase recombination, plasma adsorption onto grains, and impact ionization by electrically heated electrons. The
latter three reactions depend on the velocity distributions of ions and electrons, and hence on the field strength E.

the distribution function is given by (Davydov 1935)

fe(E, ve) =
(
1 − eEℓe

kBT
ϵe Ê · v̂e

ϵe + χkBT

)
fe0(E, ve), (13)

χ ≡ (E/Ecrit)2, (14)

where fe0 is the symmetric part of fe and v̂e = ve/ve. The
exact expression of fe0 is

fe0 =

(
me

2πkBT

)3/2 (ϵe/kBT + χ)χ

C(χ)
exp

(
− ϵe

kBT

)
, (15)

C(χ) ≡ χ3/2+χU( 3
2 ,

5
2 + χ,χ) (16)

where U(x, y, z) ≡ Γ(x)−1
∫ ∞

0 tx−1(1 + t)y−x−1 exp(−zt)dt is the
confluent hypergeometric function of the second kind with
Γ(x) ≡

∫ ∞
0 tt−1 exp(−t)dt being the Gamma function. As an

example, in Figure 2, we plot fe0 for E = 0 and 100Ecrit as a
function of ϵe/kBT .

Equation (15) has asymptotic expressions in the limits of
weak and strong electric fields. When the electric field is weak
(E ≪ Ecrit), fe0 reduces to a Maxwell distribution with the
temperature equal to that of the neutrals,

f (M)
e0 =

(
me

2πkBT

)3/2

exp
(
− ϵe

kBT

)
. (17)
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Figure 2. Electron energy distribution as a function of the electron energy ϵe
for E = 0 (dashed curve) and E = 100Ecrit (solid curve). The ticks indicate
ϵe = ⟨ϵe⟩, where ⟨ϵe⟩ is the mean electron energy (Equation (20)).

When E ≫ Ecrit, fe0 reduces to the Druyvesteyn distribution
(Druyvesteyn & Penning 1940)

f (D)
e0 =

1
πΓ( 3

4 )

(
3m3

e

4mn(eEℓe)2

)3/4

exp
(
− 3meϵ2e

mn(eEℓe)2

)
. (18)

With Equations (15), the full analytic expressions of ⟨ve||⟩
and ⟨ϵe⟩ can be derived as

⟨ve||⟩ = −
Γ(1 + χ,χ) expχ

C(χ)
eEℓe
3kBT

√
8kBT
πme
, (19)

⟨ϵe⟩ =
χU( 5

2 ,
7
2 + χ,χ)

U( 3
2 ,

5
2 + χ,χ)

3kBT
2
, (20)

respectively, where Γ(x, z) ≡
∫ ∞

z tx−1 exp(−t)dt is the incom-
plete Gamma function. Figure 3 plots Equation (20) as a func-
tion of E/Ecrit for T = 100 K.

In this study, we employ Equation (19) and (20) whenever
we compute ⟨ve||⟩ and ⟨ϵe⟩. However, in order to understand
the main results of this study, it is useful to know their asymp-
totic forms in the weak and strong field limits. The asymptotic
expressions can be derived by direct substitution of f (M)

e0 and
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Figure 3. Mean kinetic energies of electrons and ions, ⟨ϵe⟩ (Equation (20))
and ⟨ϵi⟩ (Equation (26)), as a function of the normalized field strength E/Ecrit.
The neutral gas temperature T is assumed to be 100 K. The solid and dashed
vertical lines mark E = Ecrit and E = Ecrit,i (Equation (27)), respectively.

Figure 2.4: Energy distribution of electrons depending on electric field strength in
the case of E = 0 (dashed line) and 100Ecrit (solid line). The vertical ticks on the
distributions indicate ⟨ϵe⟩.

strength. When E ≲ Ecrit, the mean kinetic energy is constant and equal to the neutral

gas temperature. When E > Ecrit, the electron mean kinetic energy increases with

increase of E. Likewise, when E is larger than Ecrit,i, an electric field strength which

starts to heat ions, the ion kinetic energy increases with increase of E. Thus, strong

electric field heat up plasma particles.

The critical Ecrit and Ecrit,i are different by ∼ 300. Actually, mean free time of electrons

and ions are the same order, because polarization of ion increases the cross section

although electrons move faster than ions.

2.2.3 Charge Reactions

Ionization fraction can be obtained by solving the rate equation including ionization

and reduction reactions. OI15 consider ionization, recombination, and dust adsorption.

In addition, OI15 adopted an analytical method for solving the rate equation presented

in Okuzumi et al. (2009). They assume the equilibrium state and the ions represented



28 CHAPTER 2. BACKGROUND

4 Okuzumi & Inutsuka

Neutral Gas (n)

Electrons (e) Positive Ions (i)

External Ionization
(CR, XR,...)

Gas-phase
Recombination

Adsorption
E-Field

Field-Induced
Impact Ionization

Dust Grains (d)

Adsorption

Electric field strength  E

Velocity distributions  fi, fe

Charge balance 
{ni, ne, Znd}

Drift velocities
 <vi||>, <ve||>

Current density   J = eni<vi||> - ene<ve||> 

Figure 1. Sketch of the charge reaction model adopted in this study. We consider a weakly ionized gas with charged dust grains and with an applied (external)
electric field. The applied field heats up the charged gas particles and thereby modifies their velocity distribution functions. The charge reactions involved are
external ionization (by, e.g., cosmic rays), gas-phase recombination, plasma adsorption onto grains, and impact ionization by electrically heated electrons. The
latter three reactions depend on the velocity distributions of ions and electrons, and hence on the field strength E.

the distribution function is given by (Davydov 1935)

fe(E, ve) =
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1 − eEℓe

kBT
ϵe Ê · v̂e

ϵe + χkBT

)
fe0(E, ve), (13)
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exact expression of fe0 is
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Γ(x) ≡
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0 tt−1 exp(−t)dt being the Gamma function. As an

example, in Figure 2, we plot fe0 for E = 0 and 100Ecrit as a
function of ϵe/kBT .

Equation (15) has asymptotic expressions in the limits of
weak and strong electric fields. When the electric field is weak
(E ≪ Ecrit), fe0 reduces to a Maxwell distribution with the
temperature equal to that of the neutrals,
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When E ≫ Ecrit, fe0 reduces to the Druyvesteyn distribution
(Druyvesteyn & Penning 1940)
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respectively, where Γ(x, z) ≡
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z tx−1 exp(−t)dt is the incom-
plete Gamma function. Figure 3 plots Equation (20) as a func-
tion of E/Ecrit for T = 100 K.

In this study, we employ Equation (19) and (20) whenever
we compute ⟨ve||⟩ and ⟨ϵe⟩. However, in order to understand
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Figure 3. Mean kinetic energies of electrons and ions, ⟨ϵe⟩ (Equation (20))
and ⟨ϵi⟩ (Equation (26)), as a function of the normalized field strength E/Ecrit.
The neutral gas temperature T is assumed to be 100 K. The solid and dashed
vertical lines mark E = Ecrit and E = Ecrit,i (Equation (27)), respectively.

Figure 2.5: Dependence of mean plasma energy on electric field strength. They took
here gas temperature to be 100 K. Vertical axis shows mean kinetic energy of electrons
(blue) and ions (red), and horizontal axis shows the electric field strength notarized
Ecrit. Ecrit and Ecrit,i shows the electric fields where electron and ion heating starts up,
respectively.

by a single dominant species. The rate equations to be solved are

0 = ζnn −Krecnine −Kdindni, (2.58a)

0 = ζnn −Krecnine −Kdendne, (2.58b)

0 = Znd + ni − ne, (2.58c)

where nx (x=n(neutral particles), e(electrons), i(ions), d(dust particles)) is number

density of x particle species, ζ is the ionization rate, Kdα is the dust adsorption rate of

charged particles, Krec is the recombination rate, and Z is the number of charges per

a dust grain. Equation (2.58a) and (2.58b) can transform into a quadratic equation.

Thus, the analytical solution n
(eq)
α is given by

n(eq)
α =

ζnn

Kdαnd

(
1

2
+

√
1

4
+

Krecζnn

KdiKden2
d

)−1

. (2.59)

Z(eq) is given by

Z =
1

nd

(
n(eq)
e − n

(eq)
i

)
. (2.60)
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Dust adsorption rate Kdα is the ensemble averaged volume that passes through colli-

sional cross section in the mean free time. Kdα is given by

Kdα = Sα

∫
σdα(vdα)vdαfα(vα)d

3vα (2.61)

where the cross section between a dust grain and a charged particle, σdα(vdα, Z), is

given by Rutherford scattering (Spitzer, 1941) and Sα is the absorption probability.

OI15 assumes Sα = 1.

2.2.4 Examples

Figure 2.6 shows the ionization fraction depending on an electric field. In low electric

fields, electrons and ions are in equilibrium. This means that gas-phase recombination

process controls ionization fraction. While electric field strength exceeds Ecrit, the

electron abundance decreases with increase in electric field. At this time, ions and

charges on dust grains are in equilibrium. The ion abundance is controlled by dust

adsorption rate, whereas the electron abundance is controlled by collisional frequency

to dust grains, i.e. electron temperature. While the electron fast sticks to dust grains,

electron abundance is different from ion abundance.

The nonlinear Ohm’s law can be derived by the definition of current density, using

⟨vα⟩ (E) and nα(E) . In low electric fields, J is linear in E, but the linear relation is

broken around E = Ecrit. Then, at E > Ecrit, current density decreases because the

dust adsorption rate of electron, Kde, steeply increases.

As stated above, OI15 showed the nonlinear relation between current density and elec-

tric field strength by considering electron heating. The nonlinearity comes from the

dependence of electric resistivity on electric field strength. The resistivity increased by

electron heating might suppresses MRI. This effect has never considered in protoplan-

etary disk so far. The suppression of MRI impacts on both the disk evolution and dust

growth. In the next chapter, we investigate zones where the electron heating stabilizes

MRI.
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Figure 6. Ion abundance xi (dotted curve), electron abundance xe (dashed curve), and grain charge abundance −Zxd (solid curve) as a function of the electric
field strength E for modes A, B, C, and D. The dot-dashed curve shows the gas-phase charge abundance in the case of no adsorption (Equation (52)). The solid
and dashed vertical lines mark E = Ecrit and E = Ecrit,i, respectively.

the Coulomb repulsion between the grain and electrons regu-
lates the electron-ion flux ratio measured on the grain surface
to be unity.

We look at how the ionization balance changes by adding
dust grains. Model B has the dust-to-gas mass ratio fdg that
is 100 times higher than model A. We see that the gas-phase
charge abundances xi and xe start to decrease at high field
strengths (E ! 10−8 esu cm−2 ≈ 10Ecrit). This is an indica-
tion that plasma adsorption takes over gas-phase recombina-
tion at high E. As mentioned above, the heating of electrons
suppresses gas-phase recombination since Krec is a decreasing
function of ⟨ϵe⟩. In contrast, electron heating accelerates the
adsorption of electrons onto grains since Kde ∝ ⟨ve⟩ ∝

√
ϵe.

As a result of the two effects, the adsorption generally over-
whelm gas-phase recombination at high field strengths. As
long as ne ≫ |Z|nd, the ion number density also decreases
with E to maintain the charge neutrality ni ≈ ne. Obvi-
ously, plasma adsorption takes over gas-phase recombination
at lower E when nd (or fdg) is higher. This explains why we
observe the decrease in xe and xi in model B but not in model
A.

For later convenience, we here derive the approximate ex-
pression of the electron number density ne for the case where
electron adsorption dominates over gas-phase recombination.
This can be derived from Equation (47) with R ≫ 1, and the

result is
ne ≈

ζnn

Kde(E, φ)nd
. (53)

In this high field limit (E ≫ Ecrit), Equation (53) reduces to
(see Equation (38))

ne ≈
ζnn

πa2⟨ve⟩Fdend
. (54)

The enhanced electron adsorption onto grains also affects
the charge balance in gas–dust mixtures. Because |Z|xd in-
creases with E while xe decreases, negatively charged grains
tend to dominate over free electrons at sufficiently high E.
In this limit, the charge neutrality is approximately estab-
lished between ions and charged grains, i.e., xi ≈ |Z|nd, with
free electrons being a minor component in the neutrality.7 In
model B, this is only appreciable at very high field strengths,
E ! 10−8 esu cm−2 ≈ 103Ecrit. However, in model C, this
occurs at much lower E (! 3Ecrit) because of the higher nd.
A decrease in ζ gives a similar effect on the charge balance
becauseA ∝ n2

d/ζ. In model D, where ζ is decrease by factor
100, |Z|xd dominates over xe even at E ≪ Ecrit.

7 Okuzumi (2009) called the states |Z|xd ≪ xe and |Z|xd ≫ xe the ion–
electron and ion–dust plasma states, respectively, since xi ≈ xe in the former
case and xi ≈ |Z|xd in the latter case. In the field of dusty (complex) plasma
physics (e.g., Shukla & Mamun 2002), the plasma state is often referred to
by the dimensionless Havnes parameter P ≡ |Z|xd/xe (Havnes 1984).

Figure 2.6: Dependence of plasma abundance on electric field strength. The vertical
axis shows the abundances, and the horizontal axis shows electric field strength. The
red dashed line shows the ion abundance xi = ni/nn, the blue dashed line the electron
abundance xe = ne/nn, the green solid line the abundance of number of charges on dust
grains −Zxd = Znd/nn. Ecrit and Ecrit,i shows the electric fields where electron and ion
heating start, respectively.
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Figure 10. Current density J (solid curve) as a function of the electric field strength E for models A, B, C, and D. The dashed and dotted curves show the
contributions from electrons and ions, Je and Ji, respectively. For models A and B, the curves for J and Je are indistinguishable. The vertical lines mark
E = Ecrit.

proportional to E0.35 because ne ∝ 1/
√

Krec (Equation (52)),
Krec ∝ ⟨ϵe⟩−0.69 (Equation (34)), and ⟨ϵe⟩ ∝ E (Equation (22)).
Therefore, J ≈ Je is proportional to E0.85 at E ≫ Ecrit, which
is not significantly different from the linear Ohm’s law J ∝ E
seen in E ≪ Ecrit.

In model B, the behavior of J is the same as that in model A
as long as gas-phase recombination dominates. A new, inter-
esting behavior appears when plasma adsorption onto grains
takes over (E ! 10−8 esu cm−2). Again, this behavior can
be understood in terms of the E dependences of ne and ⟨ve||⟩.
When plasma adsorption dominates, ne is inversely propor-
tional to the mean electron speed ⟨ve⟩ (Equation (54)). By
contrast, ⟨ve||⟩ is proportional to ⟨ve⟩, because Equations (21)
and (40) suggests that

|⟨ve||⟩| ≈
√
πme

3mn
⟨ve⟩. (56)

Therefore, in Je ∝ ne|⟨ve||⟩|, the ⟨ve⟩ dependences are canceled
out, yielding

Je ≈
Je,∞
Fde
, (57)

where the constant Je,∞ is defined by

Je,∞ ≡
√
πme

3mn

ζenn

πa2nd

≈5 × 10−5
(

10−4

fdg

)(
a

1 µm

)(
ρ•

2 g cm−3

)

×
(
ζ

10−17 s

)
esu cm−2 s−1. (58)

Hence, Je is independent of E apart from the Coulomb reduc-
tion factor Fde. In model B, Fde increases only slowly with
E because the grain surface potential |φ| grows as e|φ| ∼ ⟨ϵe⟩.
This explains why J is nearly constant after plasma adsorption
dominates over gas-phase recombination.

The result for model C is more complex. We see that J de-
creases with E in the range 3Ecrit " E " 30Ecrit and increases
again at E ! 30Ecrit. This complex behavior is a combined
effect of the electron and ion currents Je and Ji. First, the
decrease of J is caused by the change of the Coulomb re-
duction factor Fde for the adsorption rate coefficient Kde. In
model C, the Coulomb reduction factor increases from 0.025
to unity as E increases from 3Ecrit to 30Ecrit because of the
saturation of |φ| (see Section 4.1.1). This leads to an in-
creasing Je from 40Je,∞ (≈ 2 × 10−5 esu cm−2 s−1) to Je,∞
(≈ 5 × 10−7 esu cm−2 s−1) as suggested by Equation (57).
Second, the decrease of J at E ! 30Ecrit is due to the ion
current Ji. In fact, Ji continue increasing at E ! Ecrit, because
|⟨vi||⟩| ∝ E increases with E while ni ∝ 1/Kdi ∝ 1/(1−eφ/kBT )
is constant after the saturation of φ. For this reason, ion cur-
rent tends to take over and manage to increase the total current

Figure 2.7: Nonlinear Ohm’s law of OI15. The blue dashed line shows the electron
current density, red dashed line the ion current density, black solid line the sum of these
current density. The model assumes that the dust-to-gas ratio fdg = 0.01, the ionization
rate ζ = 10−17s−1, neutral gas temperature Tn = 100 K, number density of neutral gas
particle nn = 1012cm−3, the radius of dust grains a = 1µm, and the material density
ρ• = 2g cm−3.



Chapter 3

Electron Heating Zone : Mori &

Okuzumi (2016)

In this chapter, we present our previous study, MO16. Inutsuka & Sano (2005) found

the electron heating as a new ionization source in magnetic turbulence, i.e. collisional

ionization by energetic electrons. After that, OI15 has found the electron heating

would change ionization balance by electrons sticking to dust before the collisional

ionization. However, these studies did not clarify the locations and the impacts on

disk evolution. We here investigate the region where electron heating would affect MRI

turbulence.

In Section 3.1, we present the disk model, simplified plasma heating model, and ion-

ization balance. In Section 3.2, we present some conditions for MRI growth and some

criteria for mapping of turbulent state in a disk. We also briefly summarize the tur-

bulent state and calculation steps. In Section 3.3, we show where the electron heating

affects MRI turbulence. We also consider cases with various parameters. In Section 3.4,

we estimate how the electron heating suppresses MRI turbulence. In Section 3.5, we

discuss the effect of heated electrons on the electric repulsion and the collisional growth

of dust grains.

31
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3.1 Disk and Ionization Models

3.1.1 Disk Model

We consider a gas disk around a solar-mass star. We assume that the surface density

of the disk gas obeys a power law

Σ(r) = 1.7× 103fΣ

( r

1 AU

)−3/2

g cm−2, (3.1)

where r is the distance from the central star, and fΣ is a dimensionless parameter. The

choice of fΣ = 1 corresponds to the minimum-mass solar nebula (MMSN) model of

Hayashi (1981), which we take as the fiducial model.

We assume that the disk is optically thin and give the temperature profile as (Hayashi,

1981)

T (r) = 280
( r

1 AU

)−1/2

K, (3.2)

where the central star is assumed to have the solar luminosity.

The sound speed is given by cs =
√
kT/mn, where mn is the mass of a neutral gas par-

ticle, and k is the Boltzmann constant. Assuming mn = 2.34 amu and using Equation

(3.2), we have

cs(r) = 1.0× 105
( r

1 AU

)−1/4

cm s−1. (3.3)

We assume that the gas disk is hydrostatic in the vertical direction and give the vertical

distribution of the gas density as

ρ(r, z) = ρc(r) exp

(
− z2

2H2

)
, (3.4)

where ρc is the mid-plane density and H ≡ cs/Ω is the gas scale height with Ω =

2.0× 10−7 (r/1 AU)−3/2 s−1 being the orbital frequency (note that a solar-mass star is

assumed). Using the relation Σ =
∫∞
−∞ ρdz =

√
2πHρc, we have

ρc(r) = 1.4× 10−9fΣ

( r

1 AU

)−11/4

g cm−3. (3.5)
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Thus, the number density of gas particles nn = ρ/mn is given as

nn(r, z) = 3.5× 1014fΣ ×
( r

1 AU

)−11/4

exp

(
− z2

2H2

)
cm−3. (3.6)

As we will describe in Section 3.2.1, the criteria for MRI depends on the magnetic

field strength in the disk. Following Sano et al. (2000), we consider a net (large-scale)

vertical field Bz0 threading the disk and specify its strength with the plasma beta at

the midplane, βc ≡ 8πρcc
2
s/B

2
z0. If we use Equations (3.3) and (3.5), the net vertical

field strength can be expressed as

Bz0(r) = 0.59f
1/2
Σ

(
βc

1000

)−1/2 ( r

1 AU

)−13/8

G. (3.7)

For simplicity, we will assume that βc is constant in the radial direction.

The charge reaction model adopted in this study takes into account the effects of grain

charging on the ionization balance. For simplicity, we assume that dust grains are well

mixed in the gas so that the dust-to-gas mass ratio fdg is a global constant. We also

assume that the grains are spherical and single-sized with radius a (taken as a free

parameter) and internal density ρ• (fixed to be 3 g cm−3). From these assumptions,

the number density of dust grains nd is given by 3fdgρ/(4πa
3ρ•), which is expressed

as

nd(r, z) = 1.1× 103fΣ

(
fdg
0.01

)(
ρ•

3 g cm−3

)−1(
a

0.1 µm

)−3

×
( r

1 AU

)−11/4

exp

(
− z2

2H2

)
cm−3. (3.8)

The disk is assumed to be ionized by galactic cosmic rays, stellar X-rays, and radionu-

clides. The ionization rate can be expressed as

ζ = ζCR + ζXR + ζRN, (3.9)

where ζCR, ζXR, and ζRN stand for the contributions from cosmic rays, X-rays, and

radioactive decay, respectively. The cosmic ray distribution is expressed as (Umebayashi
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& Nakano, 2009)

ζCR =
ζCR,0

2

exp

(
− χ

χCR

)[
1 +

(
χ

χCR

)3/4
]−4/3

+exp

(
−Σ− χ

χCR

)[
1 +

(
Σ− χ

χCR

)3/4
]−4/3

 , (3.10)

where ζCR,0 = 1.0×10−17 s−1 is the characteristic ionization rate of cosmic rays, χ(r, z) =∫∞
z

ρ(r, z′)dz′ is the vertical gas column density above height z, and χCR = 96 g cm−2 is

the attenuation depth of ionizing cosmic rays. The ionization rate of X-rays is expressed

as (Bai & Goodman, 2009)

ζXR =
LX

1029 erg s−1

( r

1 AU

)−2.2

×

{
ζXR,1

[
exp

(
−
(

χ

χXR,1

)0.4
)

+ exp

(
−
(
Σ− χ

χXR,1

)0.4
)]

+ζXR,2

[
exp

(
−
(

χ

χXR,2

)0.65
)

+ exp

(
−
(
Σ− χ

χXR,2

)0.65
)]}

, (3.11)

where χXR,1 and χXR,2 are taken to be 6 × 10−3 g cm−2 and 3 g cm−2 respectively,

ζXR,1 and ζXR,2 are taken to be 6 × 10−12 s−1 and 1 × 10−15 s−1 respectively. We take

Lx = 2 × 1030 erg s−1 in accordance with the median X-ray luminosity of solar-mass

young stars (Wolk et al., 2005). The ionization rate of the radionuclide is expressed as

(Umebayashi & Nakano, 2009)

ζRN = 7.6× 10−19

(
fdg
0.01

)
s−1. (3.12)

3.1.2 Simplified Plasma Heating Model

As we will describe in Section 3.2.1, the criterion for MRI depends on the ionization

fraction in the disk. We employ a simple ionization model proposed by OI15 to calculate

the ionization fraction taking into account plasma heating by a strong electric field.

The model determines the ionization fraction of the gas at each location of a disk

from the balance between ionization by external high-energy sources (e.g., cosmic rays
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and X-rays), recombination in the gas phase, and adsorption of ionized gas particles

onto dust grains. The rates of recombination and adsorption generally depend on the

temperatures of ions and electrons, Ti and Te. Previous ionization models assumed

that Ti and Te are equal to the neutral gas temperature T . By contrast, the model of

OI15 determines Ti and Te as a function of the electric field strength E. For simplicity,

positive ions are represented by the single species HCO+, which is good as a first-order

approximation when heavy molecular ions that recombine through dissociation reactions

dominate (Umebayashi & Nakano, 1990; Dzyurkevich et al., 2013). We do not consider

negative ions. Although production of negative ions is rare in cool protoplanetary disks,

electrons heated to ≳ 3 eV can produce negative hydrogen ions H− via dissociative

electron attachment H2 + e− → H− + H (Wadehra, 1984). However, H− would be

instantly destroyed by CO, the most abundant molecule after H2, via the reaction

H− + CO → HCO + e− (Ferguson, 1973). For this reason, we may safely neglect the

dissociative electron attachment during electron heating.

In this study, we make two further simplifications to the original model of OI15. Firstly,

we calculate the electron temperature Te by solving the equations of momentum and

energy conservation rather than by using the solution to the full Boltzmann equation.

The rate coefficients for gas-phase recombination and plasma adsorption onto grains are

then evaluated by approximating the velocity distribution function with a Maxwellian

with temperature Te. The approach greatly simplifies the analytic expressions of the

rate coefficients that otherwise involve confluent hypergeometric functions (see Section

3 of OI15). Such an approach was originally proposed by Hershey (1939) for calculating

the mobility of heavy ions at a high electric field, and OI15 followed this approach to

compute the ion temperature Ti. In this study, we apply this approach to both Ti

and Te. Secondly, we neglect the impact ionization of neutral molecules by electrically

heated electrons by assuming that the electron energy in MRI turbulence is well below

the ionization potential of the neutrals (∼ 10 eV). The results of our calculations show

that this assumption holds in most parts of protoplanetary disks.

We denote the mean drift velocity and mean kinetic energy of a charged species α

(= i for ions, e for electrons) by ⟨vα⟩ and ⟨ϵα⟩, respectively. In a weakly ionized gas

with an applied electric field E, the momentum and energy of the charged species
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are determined by the balance between the neutral gas drag and acceleration by the

electric field (Hershey, 1939). Explicitly, the solution of the momentum and energy

balance equations can be written as (Equations (A9) and (A10) of OI15)

⟨vα⟩ =
mα +mn

mαmn

qαE∆tα, (3.13)

⟨ϵα⟩ =
3

2
kT +

(mα +mn)
3

2(mαmn)2
(qαE∆tα)

2, (3.14)

where qα, mα, and ∆tα are the charge, mass and mean free time of the plasma particles

(e.g., qe = −e and qi = e, where e is the elementary charge). Since the magnetic field is

neglected in this study, the mean drift velocity is parallel to the electric field. In a weakly

ionized gas, the plasma mean free time is determined by neutrals gas particles,

∆tα = (nn ⟨σαnvαn⟩)−1, (3.15)

where vαn is the relative velocity between a plasma particle and a neutral particle, and

σαn is the momentum-transfer cross section for the plasma–neutral collision. For elec-

trons, σen is approximately constant at low energies (Yoon et al., 2008), and therefore

we may approximate ⟨σenven⟩ as σen ⟨ven⟩. For ions, ⟨σinvin⟩ is approximately constant

owing to the polarization force between ions and neutrals (Wannier, 1953). Equa-

tions (3.13) and (3.14) are exact only when ∆tα is constant, but still hold in a good

accuracy even when ∆tα is velocity-dependent (Wannier, 1953).

The plasma temperature Tα is defined so that 3kTα/2 is equal to the kinetic energy

of random motion, ⟨ϵα⟩ − mα ⟨vα⟩2 /2. Using Equations (3.13) and (3.14), Tα can be

written as

Tα = T +
(mα +mn)

2

3km2
αmn

(qαE∆tα)
2. (3.16)

For electrons, we approximate ⟨ven⟩ in ∆te with ⟨v2e⟩
1/2

=
√
3kTe/me. This allows us

to solve Equation (3.16) with respect to Te, and we obtain

Te = T

1

2
+

√
1

4
+

2

3

(
E

Ecrit

)2
 , (3.17)
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where

Ecrit ≡
√

6me

mn

kTnnσen

e
(3.18)

is the critical field strength above which electron heating becomes significant. We have

assumed me ≪ mn in deriving Equation (3.17). For ions, Equation (3.16) directly

gives

Ti = T

(
1 +

2(mi +mn)
2me

m2
im

2
n

σ2
enkT

⟨σinvin⟩2

(
E

Ecrit

)2
)
,

= T

(
1 + 7.6× 10−7

(
T

100K

)(
E

Ecrit

)2
)
, (3.19)

where we have set ⟨σinvin⟩ = 1.6×10−9 cm3 s−1 (Nakano & Umebayashi, 1986) and σen =

10−15 cm2 (Yoon et al., 2008) in the second expression, and used mi = 29 amu.

3.1.3 Ionization Balance and Accuracy of Simplified Approach

We calculate the plasma densities in a protoplanetary disk taking into account grain

charging. The equations that describe the ionization balance in a dusty disk are (Equa-

tions (32), (33) and (35) of OI15)

ζnn −Krec(Te)nine −Kde(ϕ, Te)ndne = 0, (3.20)

ζnn −Krec(Te)nine −Kdi(ϕ, Ti)ndni = 0, (3.21)

ni − ne + Znd = 0, (3.22)

where ne and ni are, respectively, the number density of electrons and positive ions; Krec

is the gas-phase recombination rate; Kde and Kdi are the adsorption rates of electrons

and ions onto grains; Z is the grain charge number; and ϕ is the coulomb potential on

grain surface. ϕ is related to Z as

ϕ =
eZ

a
. (3.23)

As the collisional frequency, Krec and Kde depend on the electron temperature Te, while

Kdi depends on the ion temperature Ti. Kde and Kdi also depend on the coulomb

potential of a grain surface ϕ. For HCO+, the recombination rate Krec is given by
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(Ganguli et al., 1988)

Krec(Te) = 2.4× 10−7

(
Te

300 K

)−0.69

cm3 s−1. (3.24)

Approximating the ion velocity distribution by a Maxwellian with mean velocity ⟨vi⟩

and temperature Ti, Kdi is given by (Shukla & Mamun, 2002, OI15)

Kdi(ϕ, Ti) = πa2

[√
2kTi

πmi

exp

(
−mi ⟨vi⟩2

2kTi

)

+| ⟨vi⟩ |
(
1 +

kTi + 2e|ϕ|
mi ⟨vi⟩2

)
erf

(
| ⟨vi⟩ |√
2kTi/mi

)]
. (3.25)

In this study, we also approximate the electron velocity distribution by a Maxwellian

with temperature Te. The drift velocity ⟨ve⟩ can be neglected here since the drift speed

| ⟨ve⟩ | is generally much smaller than the random speed ∼
√
kTe/me owing to the

smallness of me/mn (see Golant et al., 1980; Lifshitz & Pitaevskii, 1981). The electron

adsorption rate coefficient Kde is given by the simple expression (Shukla & Mamun,

2002)

Kde(ϕ, Te) = πa2
√

8kTe

πme

×


(
1 +

eϕ

kTe

)
, ϕ > 0,

exp

(
eϕ

kTe

)
, ϕ < 0.

(3.26)

It should be noted that Equations (3.26) and (3.25) assume perfect sticking of ions

and electrons onto grain surfaces. This is a good approximation as long as the plasma

temperatures are well below 100 eV (see Section 3.2.2 of OI15 for more discussion).

Equations (3.20)–(3.22) determine ne, ni and Z at each location in a disk as a function

of E. We solve these equations using the procedure presented by Okuzumi (2009, their

Section 2.2; see also Section 3.2.4 of OI15).

To test the accuracy of our simplified approach, we reproduce the current–field rela-

tion including plasma heating (the nonlinear Ohm’s law of OI15) with adopting the

calculation steps in OI15. Current density is generally given by

J(E) = qene ⟨ve⟩+ qini ⟨vi⟩ . (3.27)
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Figure 3.1: Test of the simplified plasma heating model presented in Section 3.1.3.
The solid curve shows the J–E relation for ‘model C’ of OI15 derived using the exact
electron velocity distribution (see Figure 10 of OI15), while the dashed curve shows our
reproduction based on the simplified approach.

Including plasma heating, the number densities depend on the electric fields strength

E. To obtain the current density, we first calculate plasma temperatures Te and Ti

from Equations (3.17) and (3.19) in an applied electric field E. We then calculate the

number densities of plasma ne and ni from the ionization balance (Equation (3.22)).

We finally obtain the current density using Equations (3.13) and (3.27). In Figure 3.1,

we compare our result with the result of OI15 for the parameter set ‘model C’ of OI15.

We find that our calculation reasonably reproduces the previous result even at high field

strengths (E ≳ 10−9 esu cm−2) where electron heating is significant. The maximum

relative difference between the two results is 37%.
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3.2 Active, Dead, and E-heating Zone

3.2.1 Conditions for MRI Growth

In the limit of ideal MHD, the criterion for the MRI is given by (Balbus & Hawley,

1991)

λideal < H, (3.28)

where

λideal ≡ 2π
vAz

Ω
(3.29)

is the characteristic wavelength of the most unstable axisymmetric MRI modes, and

vAz = Bz/
√
4πρ and Bz are the vertical components of the Alfven velocity and mag-

netic field, respectively. Equation (3.28) expresses that the MRI operates when the

lengthscale of the MRI modes is smaller than the vertical extent of the disk. When

viewed as a function of z, λideal increases with z because ρ decreases toward the disk

surface. If we use Equation (3.4), the above MRI criterion can be rewritten in terms of

height as

z <
√
2 ln (βc/8π2) H ≡ Hideal, (3.30)

where the height Hideal defines the upper boundary of the MRI active zone.

Inclusion of a finite Ohmic resistivity η introduces another criterion for MRI growth.

The criterion can be expressed in terms of the Elsasser number (Turner et al., 2007)

Λ ≡ v2Az

ηΩ
. (3.31)

The instability grows when

Λ > 1 (3.32)

and decays when Λ < 1 (e.g., Sano & Miyama, 1999).
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3.2.2 Zoning Criteria

Here we describe how to determine turbulent state at a position in protoplanetary

disks. Electron heating affects on the MRI turbulence when the ionization fraction is

sufficiently decreased. We express the condition that the heating takes place and affect

MRI turbulence, and then summarize three turbulent states of MRI and steps of zoning

a disk into the state.

For electron heating to take place, the field must be sufficiently amplified before MRI

turbulence reaches a fully developed state that means the stop of MRI growth. Mu-

ranushi et al. (2012) performed a local unstratified resistive MHD simulation and found

that the fully developed current density is

Jmax = fsat

√
ρ

2π
cΩ, (3.33)

where fsat ≈ 10 according to the results by Muranushi et al. (2012). Here, we assume

fsat to be fsat = 10 and the maximum current density is Jmax. Thus, when the current

density reaches Jmax before electric field reaches the criterion for electron heating Ecrit,

MRI turbulence does not cause the electron heating.

As we will describe later in this section, we use current density to decide whether elec-

tron heating take place or not. Therefore, we transform the condition for suppressing

MRI into a form using current density. We adopt Λ = 1 (Equation (3.32)) as the cri-

terion for suppressing MRI which is triggered by electron heating. Using the electric

conductivity σc and the relation η = c2/4πσc, the condition for sustaining MRI turbu-

lence Λ ≳ 1 leads to a condition σc ≳ c2Ω/(4πv2Az). Under the Ohm’s law J(E) = σcE,

the condition can be rewritten as a lower limit to the current density

J(E) ≳ JΛ=1(E), (3.34)

where

JΛ=1(E) ≡ σc(Λ = 1)E =
c2Ω

4πv2Az

E. (3.35)

Using the above criteria, we can classify a region in protoplanetary disks into three
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Figure 3.2: Flow chart showing key steps of zoning a protoplanetary disk into the
dead, active, and e-heating zones.

different zones corresponding to three turbulent state of MRI.

1. Dead zone. Because of the low ionization fraction, Ohmic dissipation suppress all

the unstable MRI mode. Suppressed MRI does not generate turbulence and also

current density. We will refer to the region where MRI is completely suppressed

as the “dead zone”. In this case, the condition of Ohmic dissipation (Equation

(3.35)) is satisfied with no MRI turbulence.

2. E-heating zone. Electric fields of MRI turbulence become sufficiently high for

electron heating to be caused. The Ohmic dissipation is amplified by the electron

heating after the MRI grows. We will refer to the region where electron heating

affects MRI turbulence as the “e-heating zone”, where the “e” refers to both

“electric field” and “electron.” In this case, current density falls down the critical

current density of Ohmic dissipation (Equation (3.35)).

3. Active zone. MRI sustains fully developed turbulent state because the gas is

sufficiently ionized so that Ohmic dissipation is not efficient. We will refer to the

region where vigorous MRI turbulence is sustained as the “active zone” in this

study. In this case, the current density J reaches and sustains its maximum value

Jmax before electron heating reduces the MRI turbulence.

We summarize the calculation steps for zoning the disk region under some assump-
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tions. We assume that the electric field strength correspond to the activity of MRI

turbulence since developed MRI generates strong electric fields. The growth of MRI

implies increasing electric fields, and the decay of MRI implies decreasing electric fields.

Furthermore, we also assume that magnetic fields are not varied by the MRI growth for

simplicity. Under these assumptions, we determine the turbulent state at the position

with following steps (see Figure 3.2): First, we select a calculated position in the region

satisfying Equations (3.30) of a disk. We then calculate values at the position with

setting E = 0. When MRI is initially suppressed by Ohmic dissipation, i.e., Λ < 1 at

E = 0, the positions belong to the dead zone. During satisfying unstable condition,

i.e., Λ > 1, the electric field strength E is increased from E = 0 with iterating until the

turbulent state at the position is determined. We calculate current density J(E) and

assess some conditions in E. When MRI turbulence causes electron heating and Ohmic

dissipation become efficient, i.e., J(E) = JΛ=1, the position belongs to the e-heating

zone. When MRI turbulence is fully developed, i.e., J(E) = Jmax, the position belongs

to the active zone. We conduct the above steps in the whole region in a disk, and zone

a protoplanetary disk into the dead, active, and e-heating zones.

3.3 Location of the E-heating Zone

We here predict the location of the e-heating zone in protoplanetary disks using the

methodology described in Section 3.2.2. We conduct a parameter study varying the

midplane plasma beta βc, grain size a, dust-to-gas mass ratio fdg, and surface density

scaling factor fΣ. Following Sano et al. (2000), we select the MMSN (fΣ = 1 and

q = 3/2) with a = 0.1 µ, fdg = 0.01, and βc = 1000 as the fiducial model. We start out

with this fiducial model in Section 3.3.1, and discuss the dependence on the parameters

in the subsequent subsections. A summary of the parameter study is given in Table 3.1.

We also describe ion heating in Section 3.3.5.
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Table 3.1: Sizes of the Dead and E-heating Zones for Various Parameter Sets

βc a (µm) fdg fΣ Outer radius (AU)
Dead zone E-heating zone

102 0.1 10−2 1 18 74
103 0.1 10−2 1 24 82
104 0.1 10−2 1 34 82
105 0.1 10−2 1 56 82
103 0.1 10−2 1 24 82
103 1 10−2 1 11 39
103 10 10−2 1 8 19
103 100 10−2 1 8 11
103 0.1 10−1 1 52 151
103 0.1 10−2 1 24 82
103 0.1 10−3 1 12 41
103 0.1 10−4 1 8 20
103 0.1 10−2 10 55 149
103 0.1 10−2 3 36 114
103 0.1 10−2 1 24 82
103 0.1 10−2 0.3 14 44
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Figure 3.3: Cross-section view of the fiducial protoplanetary disk indicating the location
of the dead, e-heating and active zones (red, green-shaded, and blue regions, respec-
tively). The dashed line shows the gas scale height H, while the dotted line shows the
critical height Hideal below which the MRI criterion in the ideal MHD limit is satisfied
(see Equation (3.30)).
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3.3.1 Fiducial Disk Model

Figure 3.3 shows the two-dimensional (radial and vertical) map of the dead, active, and

e-heating zone in the fiducial disk model. The MRI criterion in the ideal MHD limit

(Equation (3.28)) is satisfied at altitudes below z = Hideal ≈ 2.3H (see Equation (3.30)).

The region above this height is MRI-stable with the MRI modes suppressed by too

strong magnetic tension. The dead zone is located inside 24 AU from the central star

and near the midplane where the gas is shielded from ionizing irradiation. The size

of the dead zone for this disk model is consistent with the prediction by Sano et al.

(2000) (see their Figure 7(b)), although their dead zone is slightly thicker than ours

because of the neglect of X-ray ionization. We find that the e-heating zone extends from

the outer edge of the dead zone out to 82 AU from the central star. This means that

MRI turbulence can develop without affected by electron heating only in the outermost

region of r ≳ 80 AU.

To illustrate how our zoning criteria work in this particular example, we plot in Fig-

ure 3.4 the relation between the current density J and electric field E in the midplane

at 15 AU, 45 AU and 90 AU, which represent the dead, e-heating, and active zones,

respectively. Recall that for fixed E, MRI turbulence grows if J(E) > JΛ=1 and de-

cays otherwise (Equation (3.34)). At 15 AU, J(E) falls below JΛ=1 for all values of E,

implying that the MRI is unable to grow at this location. At 45 AU, the MRI growth

condition is satisfied during the initial growth stage of E ≪ 10−11 esu cm−2, but breaks

down before J reaches Jmax because of the decrease in J(E) due to electron heating.

This implies that MRI turbulence is allowed to grow in the initial stage but saturates

at a level lower than that for fully developed turbulence. At 90 AU, J(E) reaches

Jmax before electron heating sets in, implying that fully developed MRI turbulence is

sustained here.

In contrast to electron heating, ion heating is found to be negligible at all locations

in the fiducial disk model. In the e-heating zone, the electric field strength at the

saturation point is typically ≲ 102Ecrit (see the center and right panels of Figure 3.4),

which is an order of magnitude lower than the field strength required for ion heating,

103Ecrit.
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Figure 3.4: Relations between the current density J and electric field strength E in
the midplane at 15 AU (upper left panel), 45 AU (upper right panel), and 90 AU (lower
panel), which represent the J–E relations in the dead, e-heating, and active zones,
respectively. The thick solid line shows the current–field relation J(E), the dotted line
the maximum current density of MRI, Jmax (Equation (3.33)), the vertical gray solid
line the criterion for electron heating, Ecrit (Equation (3.18)), and the dashed line the
critical current density JΛ=1 below which the MRI decays owing to Ohmic dissipation
(Equation (3.35)). The black dots on the J–E relations indicate the saturation points
at which either fully developed (J(E) = Jmax) or self-regulated (J(E) = JΛ=1) MRI
turbulence is sustained.
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Figure 3.5: Same as Figure 3.3, but for different values of the midplane beta βc.

3.3.2 Dependence on the Magnetic Field Strength

Figure 3.5 shows how the size of the dead and e-heating zones depend on the midplane

plasma beta βc. Recall that a higher βc corresponds to a weaker magnetic field B

threading the disk. As we increase βc, the dead zone expands because the Elsasser

number Λ ∝ B2 decreases. On the other hand, we find that the boundary between the

e-heating and active zones is less sensitive to the choice of βc. As can be inferred from

the middle and right panels of Figure 3.4, this boundary is approximately determined

by the condition that the current density J(E) reaches Jmax at a local maximum lying

at E ≈ Ecrit. Since both Ecrit and Jmax are independent of B and hence of βc, so is the

boundary between the e-heating and active zones.

3.3.3 Dependence on the Grain Size and Dust-to-Gas Mass

Ratio

The size and amount of dust grains in disks are important parameters in the ionization

model as they efficiently remove plasma particles from the gas phase. Obviously, these

quantities change as the grains coagulate, settle, or are incorporated by even larger

solid bodies like planetesimals. We here explore how the change of these parameters

affect the size of the dead and e-heating zones.

To begin with, we show in Figure 3.6 the location of the dead, active, and e-heating zones

with the dust-to-gas ratio fdg fixed to 0.01 but with the grain size a varying between
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Figure 3.6: Same as Figure 3.3, but for different values of the grain size a.

0.1 µm and 100 µm. We can see that the e-heating zone shrinks with increasing grain

size. On increasing a by a factor of 10, the outer radius of the e-heating zone decreases

by a factor of ≈ 2. Qualitatively, this is simply because the ionization fraction of the

gas increases with decreasing total surface area of the grains. Equation (3.20) shows

that the electron abundance xe = ne/nn in equilibrium is inversely proportional to the

total surface area of grains per unit volume 4πa2nd as long as adsorption of plasma

particles onto the grains dominate over gas-phase recombination. When dust grains

aggregate, their total surface area decreases inversely proportional to a, and hence the

electron abundance increases linearly with a. The resulting increase in the electric

conductivity causes a shift of the J–E curve toward higher J , enabling the curve to

cross the J = Jmax line at smaller orbital radii. We also find that the outer radius of

the dead zone decreases at a similar rate to that of the e-heating zone when we go from

a = 0.1 µm to 1 µm. However, the decrease in the dead zone size stops beyond this grain

size because gas-phase recombination takes over plasma adsorption onto dust grains.

As a consequence, the e-heating zone becomes narrower and narrower as a increases

beyond 10 µm.

Decreasing the dust-to-gas mass ratio fdg has a similar effect to increasing the grain

radius because the total surface area of the grains is linearly proportional to fdg. This

can be seen in Figure 3.7, where we show the location of the dead and e-heating zones

for a = 0.1 µ with fdg varying between 10−1 and 10−4. We see that the outer radii

of the active and e-heating zone decrease by a factor of ≈ 2 when fdg is decreased by

a factor of 10. This trend is similar to what we have seen when increasing the grain
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Figure 3.7: Same as Figure 3.3, but for different values of the dust-to-gas mass ratio
fdg.
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Figure 3.8: Same as Figure 3.3, but for different values of the surface density scaling
factor fΣ.

radius by the same factor.

3.3.4 Dependence on the Disk Mass

Finally, we examine how the size of the e-heating zone depends on the disk mass. Figure

3.8 shows the location of the e-heating zone for different values of fΣ. Here, we fix the

dust-to-gas mass ratio fΣ so that both the gas and dust densities scale with fΣ. We

find that the e-heating zone expands toward larger orbital radii and higher altitudes as

fΣ increases. In the horizontal direction, the expansion is mainly due to the increased

amount of dust grains with increasing fΣ. As we have explained in 3.3.3, the ionization

fraction of the gas scales inversely with 4πa2nd, and hence with fΣ. Therefore, increasing

fΣ by a factor has the same effect as increasing fdg by the same factor as long as the
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Figure 3.9: Two-dimensional distribution of the ion temperature Ti for the βc = 100
model (upper panel) and fdg = 0.1 model (lower panel). The solid lines show the
boundary of the e-heating zone, while the dotted lines show Hideal.

ionization rate ζ is unchanged (which is approximately true at ∼ 100 AU where cosmic

rays penetrate down to the midplane). This is exactly what we see in Figures 3.7 and

3.8, where the e-heating zone expands to 150 AU when either fdg or fΣ is increased

by the factor of 10 from the fiducial value. By contrast, the vertical expansion of the

e-heating zone is caused by the attenuation of X-rays that occurs at higher altitudes

with increasing gas column density.

3.3.5 Ion Heating

We observe ion heating in two cases where βc = 100 and where fdg = 0.1. Figure 3.9

plots the distribution of the ion temperature Ti in the saturated state for these cases.

In the case of βc = 100 (the upper panel of Figure 3.9), Ti is 3–4 times higher than the

temperature in a region slightly outside the e-heating zone. In this case, the Elsasser

number Λ exceeds unity even after electron heating reduces Λ. This allows the electric

field strength to reach the critical value for ion heating (≈ 103Ecrit) in the vicinity of

the e-heating zone. In the case of fdg = 0.1 (the lower panel of Figure 3.9), ion heating

takes place near the upper boundary of the e-heating zone. However, the region is very

narrow, and the temperature rise is less than 2T . Therefore, in this case, ion heating
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Figure 3.10: Radial distribution of αMRI (Equation (3.40)) for the fiducial model
(left panel) and βc = 104 (right panel). The solid black line shows αMRI,mid including
electron heating on the mid-plane, and the solid blue line shows ᾱMRI including electron
heating integrated in the z-direction. The dashed black line shows αMRI,mid without
including electron heating on the mid-plane, and the dashed blue line shows ᾱMRI

without including electron heating integrated in the z-direction.

might be practically negligible.

3.4 Saturation of Turbulence in the E-heating Zone

We have shown in Section 3.3 that self-regulation of the MRI due to electron heating

can occur over a large region of protoplanetary disks. Then the question arises how

strongly the e-heating will suppress the MRI turbulence in the e-heating zones. This

question can only be fully addressed with MHD simulations including magnetic diffusion

and electron heating in a self-consistent manner, which is far beyond the scope of this

study. In this section, we attempt to estimate the saturation level of MRI turbulence

from simple scaling arguments.

As usual, we quantify the strength of turbulence with the Shakura–Sunyaev α parameter

α = Trϕ/P , where P = ρc2s is the gas pressure and Trϕ is the rϕ component of turbulent

stress. In MRI-driven turbulence, Trϕ is generally dominated by the turbulent Maxwell

stress −δBrδBϕ/4π (Hawley et al., 1995; Miller & Stone, 2000), where δBr and δBϕ

are the radial and azimuthal components of the turbulent (fluctuating) magnetic fields.
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Therefore, we evaluate the α parameter for MRI turbulence as

αMRI ≈ −δBrδBϕ

4πρc2s
. (3.36)

In reality, the Reynolds stress (Fleming & Stone, 2003; Okuzumi & Hirose, 2011) or the

coherent component of the Maxwell stress (e.g., Turner & Sano, 2008; Gressel et al.,

2011) can dominate over the turbulent Maxwell stress at locations where the MRI is

significantly suppressed. However, we do not include these components in our αMRI

because they do not reflect the local MRI activity at such locations (see the references

above).

Next we relate the amplitude of turbulent magnetic fields to the amplitude of the electric

current density J = |J | using the Ampére ’s law J = (c/4π)∇× δB. We neglect large-

scale, coherent components in B since the electric current is inversely proportional to

the length scale of fields. We assume that the magnetic field in MRI-driven turbulence

is dominated by the azimuthal component δBϕ and varies over a length scale ∼ λideal,

where λideal is the wavelength of the most unstable MRI modes already introduced in

Equation (3.29). Then, from the Ampére ’s law, one can estimate the magnitude of the

current density as

J =
c

4π
|∇ ×B|

≈ c

4π

vAz

Ω
δBϕ =

√
ρ

4π
cΩ

δBϕ

Bz

, (3.37)

where we have replaced the derivative ∇ with wavenumber 2π/λideal = Ω/vAz. If we

use the maximum current Jmax for fully developed MRI turbulence (Equation (3.33)),

Equation (3.37) results in a simple scaling relation

δBϕ

Bz

≈ 10
√
2

J

Jmax

. (3.38)

For fully developed MRI turbulence where J ≈ Jmax, the above equation predicts

δBϕ/Bz ∼ 10, in agreement with the results of MHD simulations (e.g., Hawley et al.,

1995; Sano et al., 2004).

Now let us consider situations where e-heating is so effective that the growth of the MRI
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is saturated at J ≈ JΛ=1 ≪ Jmax. Assuming δBz ≲ Bz0 for this case, we have

δBϕ ≈ 10
√
2Bz0

J

Jmax

. (3.39)

This equation predicts the amplitude of δBϕ as a function of Bz0 and J/Jmax. MHD

simulations show that δBr ≈ −(0.4 . . . 0.6)δBϕ in MRI turbulence (Hawley et al., 1995;

Sano et al., 2004). Assuming that this scaling also holds in our case, we have δBrδBϕ ≈

−100B2
z0(J/Jmax)

2. Finally, substituting this into Equation (3.36), we obtain the scaling

relation between αMRI and J/Jmax,

αMRI ≈ 100B2
0

4πρc2s

(
J

Jmax

)2

≈ 0.2

(
β0

1000

)−1(
J

Jmax

)2

, (3.40)

where β0 ≡ 8πρc2s/B
2
z0 = βc exp (−z2/2H2) is the plasma beta (not necessarily at the

midplane) associated with the net vertical field Bz0. Formally, the derivation leading

to Equation (3.40) breaks down when MRI is so active that δBz ≫ Bz0 and J ≈

Jmax. Nevertheless, we find that Equation (3.40) reproduces the results of ideal MHD

simulations with a reasonably good accuracy. Equation (3.40) predicts that αMRI ≈ 2

for β0 = 102 and αMRI ≈ 0.02 for β0 = 102 when J = Jmax. These are consistent with

the results of isothermal simulations by Sano et al. (2004) showing that the Maxwell

component of α is ∼ 1 for β0 = 102 and ∼ 0.01 for β0 = 104 (see their Table 2, column

(10)). Therefore, we will apply Equation (3.40) to both the e-heating zone and active

zone.

The left panel of Figure 3.10 show the radial distribution of αMRI for the fiducial disk

model predicted from Equation (3.40). Here we plot the midplane value αMRI,mid ≡

αMRI(z = 0) and the density-weighted average in the vertical direction,

ᾱMRI ≡
∫ Hideal

−Hideal
αMRI(z

′)ρ(z′)dz′

Σ
, (3.41)

where we have assumed αMRI = 0 in the magnetically dominated atmosphere at |z| >

Hideal. The former quantity measures the MRI activity at the disk midplane, while the

latter quantity is more closely related to the vertically integrated mass accretion rate
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(Suzuki et al., 2010). For the fiducial disk model, we find that αMRI,mid ∼ 10−5 and 10−3

at the inner and outer edge of the e-heating zone (20 AU and 80 AU), respectively. These

values are more than two orders of magnitude lower than the value αMRI,mid = 0.2 in

the active zone (r ≳ 80 AU). This implies that the MRI is “virtually dead” deep inside

the e-heating zone. We also find that αMRI,mid changes discontinuously at the boundary

between the e-heating and active zones. The reason is that when the saturated state

changes at the point, J/Jmax also changes from unity to one order of magnitude because

of the N-shaped current–field relation (see middle and right panels of Figure 3.4). The

vertical average ᾱMRI decreases more slowly with decreasing r, because the upper layer

of the disk remains MRI-active (see Figure 3.3). This picture is qualitatively similar to

the classical layered accretion model of Gammie (1996). In right panel of Figure 3.10,

we also plot the radial distribution of αMRI,mid and ᾱMRI for a disk with βc = 104. We

find that αMRI,mid in e-heating zone is almost unchanged from the fiducial disk. The

reason is that increase of (J/Jmax)
2 ≈ 10 cancels out the depletion of β−1

c ≈ 10−1 in

Equation (3.40). Therefore, αMRI,mid remains low saturation level.

In summary, our simple estimate predicts that MRI turbulence can be significantly

suppressed in the e-heating zone. In this sense, the e-heating zone acts as a extended

dead zone. However, our estimate relies on the hypothetical scaling between the and

turbulent Maxwell stress and J/Jmax, which is as yet justified by MHD simulations. 1

In order to test our prediction, we will perform resistive MHD simulations including

electron heating in future work.

3.5 Charge Barrier against Dust Growth in the E-

heating Zone

So far we have focused on the role of electron heating on the saturation of MRI tur-

bulence. As pointed out by OI15, electron heating also has an important effect on the

1 However, there are some support for Equation (3.40) from MHD simulations including ambipolar
diffusion, not Ohmic dissipation. Bai & Stone (2011) reported the Maxwell component of α (their Table
2) and the cumulative probability distribution of J (Figure 6) for three simulation runs with β0 = 400
and with different values of ambipolar diffusivity. Their results show that αMaxwell ≈ 0.17, 0.029, and
0.0041 for models with J/Jmax ≈ 1, 0.3, and 0.1 (median values), respectively. These are consistent
with Equation (3.40) predicting that αMRI ≈ 0.5, 0.045, and 0.005 for these values of J/Jmax.
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growth of dust grains. In an ionized gas, dust grains tend to be negatively charged

because electrons collide and stick to dust grains more frequently than ions. The re-

sulting Coulomb repulsion slows down the coagulation of the grains through Brownian

(thermal) motion. This “charge barrier” is also present in weakly ionized protoplane-

tary disks, in which dust grains tend to be charged as in a fully ionized gas when their

size is larger than 1 µ (Okuzumi, 2009; Matthews et al., 2012). The important role of

electron heating in this context is that heating electrons further promote the negative

charging of the grains, because the grain charge in a plasma is linearly proportional to

the electron temperature (e.g., Shukla & Mamun, 2002). In this section, we explore

how this affects dust coagulation in the e-heating zone.

For simplicity, let us assume that dust grains have the single radius a and charge Z.

The grains can collide with each other if the condition

Ecol > Eelc (3.42)

is satisfied (Okuzumi, 2009). Here, Ecol is the kinetic energy of the relative motion of

two colliding grains, and

Eelc ≈
(eZ)2

2a
(3.43)

is the Coulomb repulsion energy of the grains just before contact. We focus on small

dust grains near the midplane and assume that the relative motion is dominated by

Brownian motion and turbulence-induced motion. Then, the kinetic energy of relative

motion can be expressed as

Ecol = EBrown + Eturb, (3.44)

where EBrown and Eturb are the kinetic energy of Brownian motion and turbulence-

induced motion, respectively. Brownian motion is the thermal motion of grains, and

EBrown is approximately expressed as

EBrown ≈ 1

2
µu2

th, (3.45)

where the thermal velocity of grains uth is expressed as uth =
√
8kT/πm and the

reduced mass of grains µ is expressed as µ = m2/(m+m) = m/2. The relative energy
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of turbulence-induced motion is expressed as

Eturb ≈ 1

2
µ(∆uturb)

2, (3.46)

where ∆uturb is the relative velocity of the grains excited by turbulence. For small

grains, ∆uturb is approximately given by (Weidenschilling, 1984; Ormel & Cuzzi, 2007)

∆uturb ≈ √
αdispRe

1/4csΩτs, (3.47)

where αdisp ≡ ⟨δv2⟩ /c2s is the velocity dispersion of the gas ⟨δv2⟩ normalized by c2s , Re

is the Reynolds number of turbulence, and

τs = ρ•a/(
√

8/πcsρ) (3.48)

is the stopping time of the grains (we have adopted Epstein’s drag law for τs). The

Reynolds number is expressed as Re = αdispc
2
sΩ

−1/νmol, where νmol is the molecular

viscosity. We estimate α with and without electron heating, using Equation (3.40)

presented in Section 3.4. Turbulence dominates the collisional energy when αdisp is

high and/or a is large. For the moment, we simply assume αdisp = αMRI, where αMRI

is the normalized local Maxwell stress introduced in Equation (3.36). This assumption

holds when the Reynolds stress in the e-heating zone is comparable to the Maxwell

stress. In reality, the Reynolds stress in the e-heating zone might be higher than the

Maxwell stress for a reason discussed later. Therefore, the estimate of Eturb presented

here should be taken as a lower limit.

To obtain Z and αMRI, we calculate the ionization fraction (Section 3.1.3), determine

the turbulent state (Section 3.2.2), and estimate the MRI-turbulent viscosity (Section

3.4) with changing grain radius a at a location. We then obtain Ecol and Eelc by above-

mentioned method. It should be noted that grains have single size and changing grain

radius means changing the size of all grains at the location. Thus, the turbulent state

at the location also depends on a.

In Figure 3.11, we plot the ratio Eelc/Ecol as a function of a at 35 AU in the midplane for

the fiducial disk model. The ratio quantifies the effectiveness of the charge barrier: the
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Figure 3.11: Effectiveness of the charge barrier against grain growth as a function of
the grain size at the midplane 35 AU in the fiducial model. The solid line (red) shows
Eelc/Ecol including electron heating, and the dashed line (blue) shows Eelc/Ecol without
including electron heating. The horizontal dotted line shows Eelc/Ecoll = 1, above which
a strong Coulomb repulsion between the grains suppresses their mutual collision cross
section. Here it is assumed that αdisp(= ⟨δv2⟩ /c2s ) is equal to αMRI, the normalized
local Maxwell stress given by Equation (3.36) (but see also Figure 3.12).

collisional cross section of two equally charged grains is significantly suppressed when

Eelc/Ecol ≫ 1. We find that electron heating significantly enhances the charge barrier

for submicron-sized grains. If electron heating is not included, this location belong to

the dead zone and the active zone with grain size being ≲ 0.05 µm and ≳ 0.05 µm,

respectively. In this case, Eelc/Ecol is much lower than unity in all a. Thus we can

conclude that dust grains at this location can grow without the charge barrier. On the

other hand, if electron heating is included, this location belongs to the e-heating zone

when 0.05 µm ≲ a ≲ 1.4 µm (see also Figure 3.6). In the e-heating zone, grains are

charged by heated electrons, leading to increase of Eelc, and MRI turbulence as collisional

source is well suppressed, leading to decrease of Eturb. Consequently, Eelc/Ecol is larger

than unity when 0.08 µm ≲ a ≲ 0.5 µm. In particular, Eelc/Ecol takes its maximum

value of 40 at a = 0.2 µm corresponding to EBrown = Eturb. Both the suppression of

turbulence and grain charge would enhance the charge barrier.
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Figure 3.12: Same as Figure 3.11, but we here evaluate αdisp = ⟨δv2⟩ /c2s using Equa-
tion (3.49) assuming that sound waves propagate from upper MRI active layers to the
midplane as it is observed for the conventional dead zone.

There are at least two mechanisms that could drive further growth of dust in the e-

heating zone. One is vertical turbulent mixing of dust particles as already pointed

out by Okuzumi et al. (2011). In general, the charge barrier is less significant at higher

altitudes where dust particles have a higher collision energy due to vertical settling (and

due to if MRI is active there). Electron heating, which was not considered by Okuzumi

et al. (2011), does not change this picture because it is also ineffective at high altitudes.

Micron-sized grains in the e-heating zone can easily be lifted up to such high altitudes if

only weak turbulence is present there (Turner et al., 2010, see also dust scale height Hd

in Section 3.6.1). The lifted grains are allowed to collide and grow there until they fall

back to the e-heating zone. In this way, small grains in the e-heating zone are able to

continue growing on a timescale much longer than vertical diffusion timescale. Okuzumi

et al. (2011) showed that the charge barrier is overcome on a timescale of 105–106 yr,

but they did not consider the amplification of grain charging due to electron heating.

How much the growth is delayed in the presence of electron heating should be studied

in future work.

Another potentially important mechanism is dust stirring by random sound waves. It
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is known that the Reynolds stress in a dead zone exceeds the Maxwell stress because of

sound waves propagating from upper MRI-active layers (e.g., Fromang & Papaloizou,

2006; Turner et al., 2010; Okuzumi & Hirose, 2011). If this is also the case for our

e-heating zone, the assumption αdisp = αMRI would significantly underestimate the

particle collision energy in the e-heating zone. To estimate this effect, we now calcu-

late αdisp using an empirical formula for the gas velocity dispersion in the dead zone

(Okuzumi & Hirose, 2011),

⟨
δv2
⟩
≈ 0.78ᾱMRIc

2
s exp

(
z2

2H2

)
, (3.49)

where ᾱMRI is the density-weighted vertical average of αMRI defined by Equation (3.41).

Equation (3.49) expresses the amplitude of random sound waves inside a dead zone.

Figure 3.12 shows Eelc/Ecol in this case and is obtained in the same way as in Figure

3.11 but we here use Equation (3.49) for αdisp in Equation (3.47). The use of Equa-

tion (3.47) for the sound wave-driven collision velocity assumes that the time correlation

of the waves’ velocity fluctuations exponentially decays on the timescale of Ω−1 as in

the Kolmogorov turbulence. We find that Eelc/Ecol now falls below unity at all grain

sizes. Thus, sound waves traveling from MRI-active layers, if they exist, could help

dust overcome the charge barrier in the e-heating zone. However, the argument made

here is not conclusive because the induced collision velocity depends on the assumed

time correlation function, or equivalently power spectrum, of the random sound waves.

If the power spectrum of the waves has only a small amplitude at high frequencies

(to which small dust particles are sensitive) compared to the turbulent spectrum, the

wave-induced collision velocity would be lower than given by Equation (3.47). The spec-

trum of velocity fluctuations in the e-heating zone should be studied in future MHD

simulations.



60 CHAPTER 3. ELECTRON HEATING ZONE : MORI & OKUZUMI (2016)

3.6 Discussion

3.6.1 Dust Diffusion

We have assumed so far that the dust-to-gas mass ratio is vertically constant. This

assumption breaks down when dust particles settle toward the midplane. If this is

the case, the dust-to-gas ratio would decrease at high altitudes, and consequently the

e-heating zone would shrink in the vertical direction as expected from Figure 3.7.

However, as we will show below, dust settling is negligible even in the e-heating zone

because even weak turbulence is able to diffuse small grains to high altitudes. Youdin

& Lithwick (2007) analytically derived dust scale height Hd in the sedimentation-

diffusion equilibrium. If the particle stopping time τs is much smaller than the Ke-

plerian timescale Ω−1, which is true for small particles, the dust scale height can be

approximately written as

Hd ≈ H

(
1 +

St

αdisp,z

)−1/2

, (3.50)

where St = τsΩ is the so-called Stokes number and αdisp,z = ⟨δv2z⟩ /c2s is the vertical

component of the velocity dispersion normalized by c2s . Equation (3.50) implies that

dust settling takes place (Hd < H) when St > αdisp,z. Under the disk model employed

in this study, St can be expressed as

St = 3× 10−8

(
a

0.1 µm

)
f−1
Σ

( r

1 AU

)3/2
exp

(
z2

2H2

)
. (3.51)

Therefore, for a = 0.1 µ, dust settling in the e-heating zone (r ∼ 10–100AU) occurs

only if αdisp,z ≲ 10−5–10−6. In the e-heating zone, αMRI ∼ 10−5–10−3 at the midplane

(see Figure 3.10), and therefore we may safely neglect dust settling even if the Reynolds

stress is as small as the Maxwell stress (αdisp,z ∼ αMRI). A larger a does not change

this conclusion, because we then would have a higher αMRI or the e-heating zone would

vanish.
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3.6.2 Effects of Grain Size Distribution and Porosity

We have characterized dust grains with a single particle size a assuming that the size

distribution of dust grains is narrow. Under this assumption, the e-heating zone covers

only a small part of protoplanetary disks when the particles grow to millimeter sizes

(see Figure 3.6). However, caution is required in applying our results to more general

cases where particles have a size distribution. In such cases, the smallest grains tend to

dominate the total surface area of dust (which controls the ionization balance), whereas

the largest grains tend to dominate the total mass of dust, simply because smaller grains

have a larger area-to-mass ratio. Therefore, it is not obvious what the typical particle

size is in these cases.

Here we discuss more quantitatively how we can apply the results of single-size calcula-

tions to cases with a size distribution. Let us assume that the particle size distribution

is given by the power-law form

dnd

da
=

3ρfdg
8πρ•

√
amax

a−3.5 (3.52)

with amin < a < amax (amin ≪ amax), where dnd/da is the number density of dust

particles per unit particle radius, and amin and amax are the minimum and maximum

particle sizes, respectively. The distribution is normalized so that that the total particle

mass density
∫
md(dnd/da)da becomes equal to ρfdg. Equation (3.52) applies when the

particle size distribution is determined by fragmentation cascade (Dohnanyi, 1969) and

is also known to reproduce the size distribution of interstellar dust grains (Mathis et al.,

1977). The quantity we are interested in is the total surface area of the particles as it

mainly determines the ionization balance in a gas–dust mixture (e.g., Sano et al., 2000).

This can be calculated as

∫ amax

amin

4πa2
dnd

da
da ≈ 3ρfdg

ρ•

1
√
aminamax

. (3.53)

Note that the factor 1/
√
amin comes from the fact that the integration in Equation (3.53)

is dominated by the smallest particles (because a2(dnd/da)da ∝ d(a−0.5)), whereas the

factor 1/
√
amax from the fact that the total mass is dominated by the largest particles.
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By contrast, if all dust particles have a single size asingle, their total surface area is

4πa2singlend,single = 3ρfdg/(ρ•asingle). Comparing this with Equation (3.53), we find that

the total surface area of particles whose size distribution is given by Equation (3.52) is

equal to that of single-size particles if

asingle =
√
aminamax. (3.54)

Since the total surface area approximately determines the ionization state, Equation (3.54)

may be used to generalize the results presented in this study to the cases where the

particle size distribution obeys Equation (3.52).

Observations of millimeter dust emission from protoplanetary disks suggest that the

largest dust particles in the disk have a size of centimeters (e.g., Testi et al., 2003;

Natta et al., 2004; Rodmann et al., 2006; Ricci et al., 2010). Assuming amax = 1 cm

and amin = 0.1 µm, we obtain asingle = 30 µm. In this case, we expect from Table 3.1

that the e-heating zone extends to ∼ 15 AU. Thus, even if cm-sized grains exist in

protoplanetary disks and the total mass of grains is dominated by such large grains,

the e-heating zone can be present in the disks.

For the same reason, large dust particles can alone provide a large e-heating zone if the

dust particles are highly fluffy aggregates of tiny grains. Okuzumi (2009) showed that

the ionization balance is insensitive to the particle radius when the fractal dimension

is ≈ 2, for which the total surface area of the aggregates is approximately conserved

during the aggregation process.

3.6.3 Hall Effect and Ambipolar Diffusion

The plasma heating model employed in this study neglects the effects of magnetic

fields on the motion of plasma particles. In terms of non-ideal magnetohydrodynamics,

this is equivalent to neglecting ambipolar diffusion and Hall effect (see, e.g., Wardle,

1999). A full treatment of these non-Ohmic effects introduces to the model additional

complexities arising from the relative angle between the magnetic and electric fields

(Okuzumi, Mori, & Inutuska, in prep.), which is beyond the scope of this work. In
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Table 3.2: Am and Ion Abundance xi in E-heating Zone for Various Parameter Sets

βc a (µm) fdg fΣ Am in e-heating zone xi in e-heating zone
Inner edge Outer edge Inner edge Outer edge

102 0.1 10−2 1 0.14 0.56 1.9×10−12 4.7×10−11

103 0.1 10−2 1 0.17 0.62 3.4×10−12 5.9×10−11

104 0.1 10−2 1 0.23 0.62 7.4×10−12 5.9×10−11

105 0.1 10−2 1 0.41 0.62 2.5×10−11 5.9×10−11

103 0.1 10−2 1 0.17 0.62 3.4×10−12 5.9×10−11

103 1 10−2 1 0.21 0.72 1.7×10−12 2.8×10−11

103 10 10−2 1 0.43 0.82 2.3×10−12 1.3×10−11

103 100 10−2 1 0.54 0.72 2.6×10−12 5.6×10−12

103 0.1 10−1 1 0.16 0.57 8.5×10−12 1.2×10−10

103 0.1 10−2 1 0.17 0.62 3.4×10−12 5.9×10−11

103 0.1 10−3 1 0.24 0.71 2.1×10−12 2.8×10−11

103 0.1 10−4 1 0.41 0.80 2.3×10−12 1.3×10−11

103 0.1 10−2 10 0.32 1.26 1.8×10−12 2.5×10−11

103 0.1 10−2 3 0.22 0.82 2.5×10−12 3.9×10−11

103 0.1 10−2 1 0.17 0.62 3.4×10−12 5.9×10−11

103 0.1 10−2 0.3 0.16 0.65 5.4×10−12 9.5×10−11

this subsection, we only briefly discuss how plasma heating and these non-ideal MHD

effects could affect each other.

Ambipolar diffusion can suppress MRI in low density regions of protoplanetary disks

(e.g., Blaes & Balbus, 1994; Hawley & Stone, 1998; Kunz & Balbus, 2004; Desch, 2004;

Bai & Stone, 2011; Simon et al., 2013a,b). If MRI is effectively suppressed in the e-

heating zone, electric fields may not sufficiently grow to cause electron heating. The

effectiveness of ambipolar diffusion is characterized by the ambipolar Elsasser number

Am = γiρi/Ω (e.g., Blaes & Balbus, 1994; Lesur et al., 2014), where γi = ⟨σinvin⟩ /(mn+

mi) and ρi = mini. According to MHD simulations including ambipolar diffusion,

MRI-driven turbulence behaves as in the ideal MHD limit if Am ≫ 1, while ambipolar

diffusion suppresses turbulence if Am ≪ 1 (e.g., Bai & Stone, 2011). Table 3.2 lists

the values of Am as well as the ion abundance xi = ni/nn at the inner and outer edges

of the e-heating zone before electron heating sets in (E = 0). We find that Am ≈

0.2–0.7, implying that ambipolar diffusion would moderately affect MRI turbulence

in the e-heating zone. Therefore, MHD simulations including both electron heating

and ambipolar diffusion are needed to assess which effect determines the saturation

amplitude of MRI turbulence in these outer regions of the disks.



64 CHAPTER 3. ELECTRON HEATING ZONE : MORI & OKUZUMI (2016)

The Hall effect is also important at r ∼ 10–50AU (see Figure 1 of Turner et al., 2014).

The Hall effect can either damp or amplify magnetic fields, which depends on the

relative orientation between the disk’s magnetic field and rotation axis and on the sign

of the Hall conductivity (e.g., Bai, 2014; Wardle & Salmeron, 2012). At relatively high

gas densities (nn ≳ 1010 cm−3), the Hall conductivity is usually positive (Wardle & Ng,

1999; Nakano et al., 2002; Salmeron & Wardle, 2003), but can become negative when

the number density of electrons is significantly lower than that of ions. Interestingly, our

preliminary investigation shows that the Hall conductivity can indeed become negative

as the electron number density is decreased by electron heating (Okuzumi et al., in

prep.). This suggests that electron heating might reverse the role of the Hall term.

Whether this occurs under conditions relevant to protoplanetary disks will be studied

in future work.



Chapter 4

Suppression of MRI by the Electron

Heating

In this chapter, we perform MHD simulations to investigate an effect of the electron

heating on the nonlinear evolution of MRI. Our previous study (Mori & Okuzumi, 2016,

or see previous chapter) have investigated the extent where the electron heating takes

place. They found that the electron heating is effective in a large region of protoplane-

tary disks. Electron heating evoked by a strong electric field of MRI turbulence reduces

the ionization fraction. When ionization fraction is sufficiently low, MRI is stabilized.

Thus, the electron heating has potential to suppress the MRI. We have also estimated

how electron heating can weaken the MRI turbulence. Then, we found the turbulence

can be largely suppressed. However, the estimation is based on only a scaling relation

between magnetic turbulence stress and current density. Thus, the detailed effects of

electron heating on the turbulence strength is still not obvious. In addition, the non-

linear evolution of MRI is also unknown. This paper first performs MHD simulations

including electron heating. Our goal in this work is to quantify the effect of electron

heating on MRI. We investigate whether the scaling relation exists or not and if so,

how much the electron heating suppresses the turbulence strength depending on cur-

rent density. In this chapter, for simple analysis of the increasing resistivity by electron

heating, we neglect the nonideal MHD effects other than Ohmic dissipation.

First, in Section 4.1, we present the numerical setup and procedure in our simulations.

65
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In Section 4.2, we then show some results and present the interpretations. Finally,

in Section 4.3, we analytically derive a relation between current density and Maxwell

stress.

4.1 Numerical Setup and Procedure

We adopt a local shearing box whose center is located at a distance from the central star

r0. The coordinates x, y, and z are radial, azimuthal, and vertical axis, respectively.

We numerically solve the following MHD equations (the equation of continuity, the

equation of motion, and Faraday’s equation)

∂ρ

∂t
+∇ · (ρv) = 0, (4.1)

∂v

∂t
+ (v · ∇)v = −2Ω× v + 3Ω2xex −

1

ρ
∇
(
P +

B2

8π

)
+

1

4πρ
(B · ∇B) , (4.2)

∂B

∂t
= −c∇×E, (4.3)

where v is the gas velocity, ρ is the mass density, P is the gas pressure, Ω is the angular

velocity at r0, B is the magnetic field, E is the electric field, and c is the speed of

light. In this chapter, we assume the isothermal change of gas and use the isothermal

equation of state,

P = c2sρ. (4.4)

Electric field E is given by

E =
4πη(E ′)

c2
J − 1

c
v ×B. (4.5)

Here, we have used the Ohm’s law in comoving frame,

J ′ =
c2

4πη(E ′)
E′, (4.6)
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and the Lorentz transformation of current density J ,

J ′ = J , (4.7)

where the ′ means values in the comoving frame. In this chapter, since we use our

resistivity model instead of usual constant resistivity, the dependence of the resistivity

on electric field strength is explicitly expressed. Adopting the same formula of MO16,

we use the electric field in the comoving frame. In our simulations, for electric field, we

express it only in a comoving frame in order to simply derive electric fields, E ′ = ηJ .

In Section 4.2, note that we omit the superscript ′ of electric field strength.

The relation between current density and electric field including electron heating (non-

linear Ohm’s law) has N-shape (see Figure 10 of OI15; see also Figure 3.4 ). In MHD

formulation, electric field is obtained from the current density via the Ohm’s law. How-

ever, under the nonlinear Ohm’s law, we obtain multiple values of electric fields when

a current density is given. Thus, in the MHD simulation, we cannot exactly treat the

nonlinear Ohm’s law. In this work, we focus on only the resistivity increased by electron

heating but does not address an effect of the complex N-shaped Ohm’s law. An exact

treatment of Ohm’s law is beyond the scope of this work.

To include the increase of resistivity by electron heating, we introduce a analytical

resistivity model depending on E. From above the reason, mimicking the nonlinear

Ohm’s law, we give the simple analytical resistivity model where the resistivity increases

but does not drops current density with increase of E during electron heating. Figure

4.1 shows the schematic diagram. Specific formula of the resistivity is expressed as

J ′ =


c2

4πη0
E ′, E ′ < EEH,

c2

4πη0

(
E ′

EEH

)γ−1

E ′, E ′ > EEH,

(4.8)

or

E ′ =


4πη0
c2

J ′, J ′ < JEH,

4πη0
c2

(
J ′

JEH

)1/γ −1

J ′, J ′ > JEH.

(4.9)

where γ is a constant value sufficiently less than unity, EEH is an electric fields strength
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Figure 4.1: Schematic diagram of modeling our J–E relation after the nonlinear
Ohm’s law. We neglect the N-shape of the nonlinear Ohm’s law. Instead, we give
the shallow inclination of J–E relation during electron heating. In this model, the
resistivity increases with increase of E.

when electron heating start to take place, and EEH =
4πη0
c2

JEH. Especially, η is written

as

η =


4πη0
c2

, J ′ < JEH,

4πη0
c2

(
J ′

JEH

)1/γ −1

, J ′ > JEH.

(4.10)

In this chapter, we take γ to be 0.1 and JEH to be arbitrary parameter. Using this

model, we solve the MHD equation.

We use a shearing box and thus set a uniform shear flow, (vx0, vy0, vz0) = (0,−3
2
Ωx, 0).

The simulation box size is (Lx, Ly, Lz) = (H, 2πH, H), where Lx, Ly, and Lz are

lengths of simulation box in each directions and H is the gas scale height. We use the

periodic boundary conditions at each boundary x = −0.5H, 0.5H; y = −πH, πH; z =

−0.5H, 0.5H because we assume the simulated phenomena occurs in local region.

Following Hawley et al. (1995), we define the computational units of length Lu, time Tu,

and mass Mu as H, 10−3Ω−1, and ρ0H
3, respectively, where the subscript “u” means

units of our simulation results. Therefore, the unit of velocity is given by Vu = 103cs,

the unit of density ρu = ρ0, and the unit of pressure Pu = 106ρ0cs. The sound speed,

the initial density, and the initial pressure of numerical values (cs/Vu, ρ0/ρu, and P0/Pu)

are, respectively, given by cs/Vu = 10−3, ρ0/ρu = 1, and P0/Pu = 10−6. Let the unit of
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magnetic field strength be

Bu =
√
8πP0. (4.11)

We obtain the unit of current density from Ampére’s equation,

Ju =
c

4π

Bu

H
. (4.12)

To write the Ohm’s law E = (4πη/c2)J as

E

Eu

=
η

ηu

J

Ju
, (4.13)

we define the unit of electric fields strength as

Eu =
Buηu
cH

= 103
cs
c
Bu, (4.14)

where we use ηu = L2
u/Tu = 103Hcs. Using these units, in this work, we define Jmax

as

Jmax = 10Ju. (4.15)

Here, Jmax indicates just a typical value of the resulting maximum value of current den-

sity in fully developed MRI (Muranushi et al., 2012). Note that the resulting maximum

current does not necessarily equal to 10Ju.

We set initial setup as Figure 4.2. We give the uniform vertical magnetic fields whose

strength is

Bz0 = β
−1/2
0 Bu, (4.16)

where the initial plasma beta vales β0 is

β0 =
8πP0

B2
z0

. (4.17)

In order for MRI to grow in the beginning, we give the initial Elsasser number Λ0 as

Λ0 = 10. Here, in this work, the Elsasser number is defined by

Λ =
v2A
ηΩ

. (4.18)
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Figure 4.2: Schematic diagram of initial setup of our calculation. Initially, for MRI
to grow, we give the Elsasser number Λ0 = 10. Then, for the current growth to be
suppressed, we give JEH, at which electron heating begin to occur, to be less than Jmax

Because an efficiency of ohmic dissipation is changed at Λ = 1, we can approximately

expect MRI growth in Λ > 1 and MRI decay in Λ < 1. Thus we can also expect

that final saturated current density converges on Λ = 1. In order to investigate the

dependence of the results of a saturated current density, we changes the parameter

JEH, which expresses where in a J–E plane, electron heating starts up. We randomly

gives the initial amplitude of pressure perturbations as δP/P0 = 2.5 × 10−4 and the

one of velocity perturbations as |δv|/cs = 5× 10−5. The initial perturbation values are

two orders of magnitude less than the ones of (Hawley et al., 1995). Because we treat

very small fluctuations in our simulation, to properly treat them, we note that initial

perturbations should be less than amplified fluctuations.

In this study, we use Athena, open source code which uses Godunov’s scheme. We per-

form MHD simulations with a unstratified local sharing box. The fluid is compressible,

isothermal, and magnetized.

In this work, we plot all values as the volume-averaged quantities as ⟨...⟩ and express also

the time-averaged quantities as ⟨⟨...⟩⟩. For example, the volume average of a variable a

is written as

⟨a⟩ =
∫
a dV∫
dV

, (4.19)
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where the integration region is the simulation box −0.5H < x < 0.5H, −πH < y < πH,

and −0.5H < z < 0.5H. The time average of a is written as

⟨⟨a⟩⟩ =
∫
a dt∫
dt

(4.20)

where we average a value from 20 orbits to 30 orbits in this work. Here, we express

time with “orbits” which indicates one orbital time, 2π/Ω. The integration interval

corresponds to final state in our simulation, and thereby the time averaged value is

expected to means the saturated value.

The Courant-Friedrichs-Lewy number, which is a ratio of fluid velocity to computable

velocity, is fixed at 0.4. In order for the number to be fixed, time intervals per one time

step is variable since the size of a mesh is constant. We take the number of meshes to

be (Nx, Ny, Nz) = (64, 128, 64) in each direction. For MRI in a uniform vertical field,

we have to note that at least vertical size of one cell (i.e. resolution) should be less than

the most unstable wavelength to properly treat MRI growth. The most unstable mode

is written as

λm.u., ideal = 2π
vA,z

Ω
= 2π

√
2

β0

H = 0.089

(
β0

104

)−1/2

H. (4.21)

Therefore, because Nz requires Nz > 11.2
(

β0

104

)1/2
, Nz = 64 is reasonable resolution in

our calculation.

The most interesting values in our calculation is the Maxwells stress, which greatly

affects the disk evolution. Moreover, if we simply assume the magnetic energy to be the

kinetic energy, the Maxwell stress also controls the velocity fluctuation which affects

dynamics of solid particles. The Maxwell stress ⟨−BxBy⟩ /(4π) is often expressed as a

Shakura-Sunyaev α parameter which is defined as the accretion stress normalized the

pressure. When the Maxwell stress dominates in the accretion stress, α is written as

α = ⟨⟨−BxBy⟩⟩
4πP

. Although pressure P varies, in this work, we use a dimensionless value

which is defined as the Maxwell stress normalized by the initial pressure,

αM =
⟨⟨−BxBy⟩⟩

4πP0

. (4.22)
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Table 4.1: Summary of results.

Run ID β0 JEH Λ0

⟨⟨
B2
⟩⟩

/(8πP0) ⟨⟨αM⟩⟩ ⟨⟨ρvxδvy⟩⟩ /(8πP0) ⟨⟨J⟩⟩ /Ju
34 104 0.001 10 (1.0± 0.0)× 10−4 (2.4± 0.3)× 10−8 (2.0± 0.4)× 10−10 (1.7± 0.1)× 10−3

35 104 0.003 10 (1.0± 0.0)× 10−4 (2.6± 0.0)× 10−7 (1.5± 0.2)× 10−9 (5.2± 0.0)× 10−3

36 104 0.01 10 (1.1± 0.0)× 10−4 (2.8± 0.0)× 10−6 (1.5± 0.2)× 10−8 (1.7± 0.0)× 10−2

37 104 0.03 10 (1.6± 0.0)× 10−4 (2.6± 0.0)× 10−5 (1.5± 0.1)× 10−7 (5.2± 0.0)× 10−2

38 104 0.1 10 (7.6± 0.0)× 10−4 (2.8± 0.0)× 10−4 (1.7± 0.2)× 10−6 (1.7± 0.0)× 10−1

39 104 0.3 10 (1.8± 1.2)× 10−3 (7.6± 2.1)× 10−4 (9.9± 9.7)× 10−4 (4.1± 0.3)× 10−1

40 104 1.0 10 (7.0± 2.4)× 10−3 (4.2± 0.7)× 10−3 (2.7± 2.7)× 10−3 (1.2± 0.0)
41 104 3.0 10 (1.3± 0.1)× 10−2 (1.1± 0.0)× 10−2 (2.9± 1.5)× 10−3 (2.8± 0.0)
42 104 ∞ 10 (6.2± 2.1)× 10−2 (5.6± 0.7)× 10−2 (8.3± 2.9)× 10−3 (8.5± 0.9)

We have confirmed that the pressure P can vary within a factor of two at most in our

calculations. In addition, we define a dimensionless value with respect to resistivity

η,

Λη =

(
v2A,z0

ηΩ

)
(4.23)

where vA,z0 is the Alfvén velocity consisting of initial magnetic field strength, vA,z0 =

Bz0/
√
4πρ0. Λη expresses the Elsasser number assuming that magnetic field strength

and density do not vary. In Figure 3.4 of Section 3.2, we plot a line of Λη = 1 in a J–E

plane to show the threshold of the resistive MHD. The magnetic field is not amplified

during a linear growth, and thus Λη exactly indicates the Elsasser number Λ.

In our previous work (MO16), we have found out the scaling relation between the

Maxwell stress (or αM) and the current density. In the next section, in order to verify

the scaling relation, we plot the Maxwell stress and the current density.

4.2 Results of Shearing-Box MHD Simulations

In this section, we present the representative simulation results. We set the initial

parameters as β0 = 104 and Λ0 = 10. We give JEH of 8 parameters as JEH/Ju =

3× 10−4, 1× 10−2, 3× 10−2, 1× 10−1, 3× 10−1, 1, 3, and ∞, where JEH/Ju = ∞ means

the ideal MHD case. The initial setup and result are summarized in Table 4.1.

Figure 4.3 shows the finale state (t = 30 orbits) of the representative our simulation

results of JEH/Ju = 0.03 and the ideal MHD case, JEH/Ju = ∞, for comparison. We

also show the x–z and y–z plane at the final state of the each parameters in Figure 4.4.
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Our J-E Relation  Ideal MHD 

Figure 4.3: Outline of representative our MHD shearing box simulations. The left
figure shows the distribution of magnetic field strength |B| with our J–E relation of
JEH/Ju = 0.03. The right figure shows the result in ideal MHD case for comparison.
These figures show the final state of the calculations. Note that the color range of the
two is largely deferent.

We find the ordered magnetic field and the non-turbulent steady state, the laminar flow

or the stationary state, with our J–E relation model, whereas the magnetic turbulence

is generated in the ideal MHD case because of the MRI nonlinear growth. In the non-

turbulent state, the magnetic field is stretched in the y-direction, and thereby sinusoidal

structure of the magnetic field forms in y–z plane (the upper left panel in the upper

block in Figure 4.4). Because azimuthal magnetic field By varies in the z-direction,

the layered contour of magnetic field strength appears. Such an anti-parallel magnetic

field structure forms a current sheet which is maximum in calculating box. In our

model, the growth of the current sheet is suppressed by the increasing resistivity. Thus,

the initial uniform magnetic field is stretched but its growth stops at the sinusoidal

structure.

In Figure 4.5, we shows the tracks of the volume-averaged current density ⟨J⟩ and

electric field strength ⟨E⟩ in order to check our model. The current densities initially

grow on the line of Λ0 = 10 and then branch off the line after the current densities

reaches each JEH. We confirm that our model works according to our expectation of J–

E relation. We also confirm that the Elsasser number of initial magnetic field strength
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Figure 4.4: Magnetic field distribution in the x–z plane (−0.5H ≤ x ≤ 0.5H,−0.5H ≤
z ≤ 0.5H; upper block including four panels) and y–z plane (−0.5H ≤ y ≤
0.5H,−0.5H ≤ z ≤ 0.5H; lower block including four panels) at the final state (t = 30
orbits) of the each calculation. The each panel in blocks shows the case of JEH/Ju = 0.03
(upper left), 0.3 (upper right), 3 (lower left), and the ideal MHD (lower right). The
arrows show directions of the magnetic field in x-z plane, but does not express the
magnitude. The colors show the magnetic field strength |B| , but note that the color
scale varies at each initial parameters.
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Figure 4.5: Tracks in the current-field plane. The vertical axis shows volume-averaged
current density ⟨J⟩, and the horizontal axis volume-averaged electric field strength ⟨E⟩.
The colors show run ID which means variation of JEH. The dashed lines of white grey,
grey, and dark grey show the initial Elsasser number Λη = 10, 1, and 0.1. The circles
are plotted at equal intervals (∆t = 1 orbits) to express the speed in the J–E plane.
The white filled circles show that saturated vale of ⟨J⟩ and ⟨E⟩ of each JEH.

Λη is approximately saturated at Λη = 0.1.

In Figure 4.6, we shows the time variation of the Maxwell stress varying the parameter

JEH which control saturated current density. We found that the saturated Maxwell

stress depends on JEH. Thus saturated Maxwell stress depends on the saturated cur-

rent density. Lower current density provides lower Maxwell stress. Therefore, we can

conclude that MRI growth stops if electron heating begin to take place at much low

electric field strength. We also find the saturated MRI behavior can be divided into the

two case, the fluctuated case (JEH ≲ 0.1) and the stationary case (JEH ≳ 0.3). Accord-

ing to Figure 4.3, the two case would correspond to the turbulent state and laminar

state. Thus, we can find the threshold of current density at which the MRI completely

dies away. Hereafter, we call the threshold by Jturb/Ju ≈ 0.3.

In MO16, we used a scaling relation between the Maxwell stress and current density to

investigate the possibility of suppressing MRI by electron heating. The scaling relation
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Figure 4.6: Time variation of αM with variating JEH. The colors show the different
value of JEH, and the black solid line shows the ideal MHD case.
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Figure 4.7: Figure 4.6 with plot of the analytical scaling relation presented in MO16.
The dashed lines show the scaling relation.
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Figure 4.8: Dependence of volume-averaged ⟨αM⟩ to volume-averaged ⟨J⟩ (colored
dots). The colors show the same as Figure 4.3. The dashed line shows the fitting
formulae in low current region, ⟨αM⟩ = 0.005(⟨J⟩ /Ju)2 or 0.5(⟨J⟩ /Jmax)

2.

is written as

αM ≈ 0.02

(
β0

104

)−1(
J

Jmax

)2

. (4.24)

However, the equation is supported only by the scaling law. In addition, even the

existence of this relation is not clear because many previous studies have not focused

the relation of current density to the Maxwell stress. Thus, in order to verify this

relation, we plot the formula over the resulting Maxwell stress in Figure 4.7. The

relation is expressed as a function only of the initial plasma beta β0 and current density

J . Thus, if the relation is correct, the relation should be similar to the result at each

time. However, Figure 4.7 shows that the relation does not follow the resulting Maxwell

stress, although the relation follows the plot during the MRI linear growth. At the final

state, the saturated Maxwell stress of the two is different by a factor of 3–10. In Section

4.3, we will investigate the cause of this discrepancy and will propose a new predictive

formula for α as a function of J . We improve the relation between the Maxwell stress

and current density (Equation (4.24)) using a more sophisticated scaling law (Equation

(4.34) in Section 4.3).

To obtain an empirical formula of the stress–current relation in saturated state, taking
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Figure 4.9: Dependence of time- and volume-averaged Elsasser number ⟨⟨Λ⟩⟩ on time-
and volume-averaged ⟨⟨J⟩⟩.

the time average of the Maxwell stress and current density, we show dependence of the

saturated Maxwell stress ⟨⟨αM⟩⟩ on saturated current density ⟨⟨J⟩⟩ in Figure 4.8. In

this chapter, since the interval of the time integration is from 20 orbits to 30 orbits,

the time average means saturated values. We confirm an obvious correlation between

the two quantities. Fitting the correlation with a quadratic function, we obtain the

empirical formula of the relation, 0.005(⟨⟨J⟩⟩ /Ju)2 or 0.5(⟨⟨J⟩⟩ /Jmax)
2. We can see

that the Maxwell stress largely depends on current density. This formula means that a

lower current leads to lower turbulence strength.. The dependence on current density,

αM ∝ J2, is consistent with Equation (4.24) presented in MO16. Thus, in Equation 4.24,

the dependence of current density is consistent with the results, whereas the magnitude

is different from the results. Note that since in this calculation the initial plasma beta

β0 is constant, the dependence on β0 does not appear in this fitting formula.

Here we address what determines the boundary of the laminar and turbulent state,

namely what determines Jturb. In Figure 4.8, we can see that the fitting formula is

slightly incorrect at high current density (⟨J⟩ ≳ Jturb),. This may concern the nonlinear

evolution of the Elsasser number. Figure 4.9 shows dependence of the volume- and

time-averaged Elsasser number ⟨⟨Λ⟩⟩ on current density. Here, the Elsasser number is

defined as Λ = v2A/(ηΩ) = |B|2/(4πρ0ηΩ). As we see, at J > Jturb, we can see that
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Figure 4.10: Dependence of time- and volume-averaged plasma beta ⟨⟨β⟩⟩ and resistivity
⟨⟨η⟩⟩ on time- and volume-averaged ⟨⟨J⟩⟩. The colors shows the same as Figure 4.9.

the threshold current density Jturb approximately corresponds to the current density

at Λ = 1. Thus, we can naturally understand that the MRI does not generate the

magnetic turbulence because MHD is resistive at Λ ≲ 1. On the other hands, the MRI

generates the turbulence at Λ ≳ 1.

The increase of the Elsasser number is understood by the following. The Elsasser

number can be written as

Λ =
v2A
ηΩ

=
B2

4πP

ρc2s
ηΩ

= 2× 10−3 1

β

ηu
η
.

Thus, Λ is proportional to β−1η−1. Figures 4.10 shows dependence of the volume-

and time-averaged plasma beta ⟨⟨β⟩⟩ (left panel) and resistivity ⟨⟨η⟩⟩ on ⟨⟨J⟩⟩(right

panel). We can see that when ⟨⟨Λ⟩⟩ begins to increase, ⟨⟨Λ⟩⟩ also begins to increase.

⟨⟨η⟩⟩ begins to decrease when ⟨⟨Λ⟩⟩ reaches unity. Thus, we can expect that ⟨⟨Λ⟩⟩ is

increased by ⟨⟨β⟩⟩ in 0.03Ju < J < Jturb. ⟨⟨η⟩⟩ decreases due to changing state of flow

and thereby ⟨⟨Λ⟩⟩ increases with ⟨⟨J2⟩⟩.

To see why the MRI is saturated in steady non-turbulent state when the resistivity

by the electron heating, in Figure 4.11, we shows the time variation of the critical

wavelength. The critical wavelength is the shortest wavelength in unstable MRI mode

and defined as

λcrit,z ≈ 2π
1√
3

vA,z

Ω

(
1 + Λ−1

z

)
, (4.25)

which is given by the dispersion relation in a steady state (Sano & Miyama, 1999). The
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Figure 4.11: Critical wavelength λcrit,z (lower panel) in vertical direction and normalized
by H. The colors show the same as Figure 4.3.

critical wavelength is approximately equal to simulation box size H. This indicates

that unstable wavelength become larger and larger during MRI growth, and then all

MRI unstable mode dies when the unstable wavelength cannot exist. Thus, in this

simulation, the final state is determined by the box size.

4.3 Predictive Formulae

In this section, we derive a formula which predicts the Maxwell stress from current

density. Simulation of MRI can treat significantly shorter time than the disk lifetime.

Thus, such the predictive formula enable us to introduce the effect of turbulence as α

parameter. In Subsection 4.3.1, we derive a fitting formula which predicts the Maxwell

stress in both the laminar and turbulent state. Then, in Subsection 4.3.2, focusing that

the fluctuation can be assumed to be first order, we derive an analytical expression

of the laminar state that exactly gives the physical quantities. The expression also

provides an interpretation of the scaling relation in the laminar state.
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4.3.1 Scaling Relation

Here we improve the scaling relation presented in MO16 and find the practical predictive

formula. First, we determine an fitting formula of the laminar state from a scaling law,

and then we determine that in the ideal MHD case. After that, we link the two formulae

together by taking the average to reproduce simulation results.

We first derive a scaling relation between the Maxwell stress and the current density,

noting that MHD is resistive when MRI is saturated by the increased resistivity. To

relate current density to Maxwell stress, we take ∇ to be the typical wavenumber k in

the Ampére’s equation J = c
4π
∇×B. Here, we assume that k is the critical wavenumber

in the vertical direction,

k = kz,crit =
√
3
vAz0

η
(4.26)

The current densities of x and y components are described as

Jx ≈ − c

4π
kz,critBy, (4.27)

Jy ≈
c

4π
kz,critBx. (4.28)

Therefore, using the current density, Maxwell stress ⟨BxBy⟩ /(4π) normalized P0 can

be expressed as

αM =
1

4πP0

(
JxJy
k2
z,crit

)(
4π

c

)2

= 200
1

3

(
η

vAz0H

)2(
JxJy
J2
max

)
,

= 200
1

3

(
v2Az0

c2s

)(
ηΩ

v2Az0

)2(
JxJy
J2
max

)
,

= 400
1

3

(
1

βz0

)
Λ−2

η

(
JxJy
J2
max

)
, (4.29)

where the current densities is normalized by the maximum current density in fully

developed MRI, Jmax = 10
√

ρ
2π
cΩ,(Muranushi et al., 2012). J would be dominated by

Jx because By is generally larger than Bx (e.g., Hawley et al., 1995; Sano et al., 2004),
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and therefore we assume that Jx ≈ J and Jy ≈ J(Bx/By).

αM = 400
1

3

(
1

βz0

)
Λ−2

η

Bx

By

J2

J2
max

, (4.30)

As we see below, we here assume the ratio of Bx to By in the saturated laminar state

(Equation (4.41)),

Bx

By

= −2Λη,sat = −0.1

(
βz0

104

)−1/2

. (4.31)

Then, we obtain

αM,lami = 1.3× 10−3

(
βz0

104

)−1.5

Λ−2
η

(
J

Jmax

)2

. (4.32)

This expression provides the Maxwell stress once current density and Λη is given.

On the other hand, in the case of the ideal MHD, the scaling relation has been obtained

in MO16 (or see Equation (4.24))

αM,turb ≈ 3× 10−2

(
βz0

104

)−1(
J

Jmax

)2

, (4.33)

where we have modified a factor of 1.5 to fit with our results.

Finally, we take link the two formulae together by taking the average. For best fitting,

we square a sum of root values,

αM =
(
(αM, turb)

1/2 + (αM, lami)
1/2
)2

=

(3× 10−2

(
βz0

104

)−1
)1/2

+

(
1.3× 10−3

(
βz0

104

)−1.5

Λ−2
η

)1/2
2(

J

Jmax

)2

(4.34)

In Figure 4.12, we plot (4.34) over Figure 4.6. We can see that the equation surprisingly

reproduce the resulting Maxwell stress at each time. The formula requires the initial

plasma beta β0, current density J , and Λη. β0 is usually given by initial magnetic field.

Λη is analytically given by (4.38) in the laminar state. Even in the turbulent state, Λη

can be estimated to be approximately 0.1. In the J–E plane, Λη corresponds to the

contour whose slope is proportional to J . Thus, once Λη is given, J also is determined.
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Figure 4.12: Figure 4.6 with plot of Equation (4.34). The dashed lines show the equa-
tion.

Using this formula, we can predict the Maxwell stress from the J–E relation at a

location in protoplanetary disks.

We have to note that these results is based just on the simple analytic J–E relation. In

reality, the electron heating rises the N-shaped nonlinear Ohm’s law. Of course, finally,

the real effect of electron heating on MRI is investigated by considering the realistic

resistivity model with a MHD simulation. However, this work first unveils the relation

of Maxwell stress and current density and the state when MRI completely dies away by

suppressing current density. The importance of current density in MRI is stressed. We

eventually conclude that the reliability of the suppression of MRI by electron heating

has been shown by this work.

4.3.2 Analytical Solution of Laminar State

Next, we present a solution of the laminar state that provides a better understanding

of the empirical formula of Equation (4.32). As we see below, the laminar state can be

obtained by an analytical manner. A point of the manner is to assume that linearized

equations are available because the fluctuations of the final state is sufficiently small

to be first order displacement even in the “nonlinear” stage. Actually, the nonlinearity

of the simulation is imposed on the evolution of resistivity. In addition, some features
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of the laminar state is also available. At the laminar state, one wavelength of the

magnetic field vertically lies in simulation box, as we see in Figure 4.3. Thus, we

can use the vertical wavelength kz = 2π/H. Since the laminar state is steady, we

can evidently neglect time-evolution terms in basic equations. In the concrete, we put

ω = 0. Since ω and k are given in the dispersion relation ω = ω(k, η), we obtain

the saturated resistivity in the steady laminar state, ηsat. ηsat also gives the saturated

Elsasser number Λ. Moreover, since η is a function of current density J in our model

(see Equation (4.10)), we can obtain also the saturated current density, Jsat. Thus,

finally, we will obtain an analytical solution of the Maxwell stress in the saturated

laminar state because the current is closely related to magnetic field.

First, let us derive resistivity in the saturated state, ηsat. We use the dispersion relation

derived from the linearized equations in Sano & Miyama (1999),

v4Az0k
4
z + Ω2η2satk

2
z − 3Ω2v2Az0k

2
z = 0, (4.35)

where we have assumed incompressible fluid, a sheet approximation, and a uniform ver-

tical magnetic field. The uniform magnetic field is justified by the fact that fluctuation

of Bz is much smaller than Bz0. Solving Equation (4.35) with respect to ηsat, we obtain

η as function of kz,

ηsat =

√
3v2Az0

kz
− v4Az0

Ω2
. (4.36)

Using kz = 2π/H in Equation (4.36), η is analytically given by

η =
v2Az0

Ω

√
βz0

βcrit

− 1 ≈ v2Az0

Ω

√
βz0

βcrit

, (4.37)

where βcrit is defied as βcrit = 8π2/3 and we have used βz0 > βcrit ≈ 26.3. Thus,

dividing Equation (4.37) by v2Az0/Ω, we obtain the Elsasser number in the saturated

state as

Λη, sat =
v2Az0

ηΩ
=

√
βcrit

βz0

= 0.051

(
βz0

104

)−1/2

. (4.38)

We show dependence of the time- and volume-averaged Λη, sat on ⟨⟨J⟩⟩ in Figure 4.13

in order to verify this formula. We confirm that at J ≲ Jturb, the formula is consis-
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Figure 4.13: Dependence of Λη, sat on ⟨⟨J⟩⟩. The dashed line shows Equation (4.38).

tent with the result. When the formula well reproduces the result, the fluctuation is

small because this formula is derived only by assumption of the linearization of basic

equations. Because the nonlinearity of the fluctuations does not appear, we can expect

this formula to strongly predict Λη, sat and other physical quantities. Note that in usual

the dispersion relation with ω = 0 leads to the shortest unstable wavenumber (critical

wavenumber), kcrit =
√
3vAz0/η. Thus, the assumption of kcrit = 2π/H means that MRI

growth stops at the laminar state because unstable wavenumbers can not exist in the

simulation box. We can also derive Equation (4.37) from a equation 2πH = kcrit.

Next, we give the Maxwell stress as a function of current density J . We obtain a

relationship between Bx and By from Sano & Miyama (1999),

Bx =
v2Az0

ηsatΩ
(−2δBy) = −2Λη,satBy, (4.39)

By =
v2Az0

ηsatΩ

(
1

4
− 1

4

Ω2

v2Az0k
2
z

)
Bx = Λη,sat

(
1

4
− 1

4

Ω2

v2Az0k
2
z

)
Bx. (4.40)

These relations give the ratio between Bx and By as, dividing Equation (4.39) by

By,

Bx

By

= −2Λη,sat = −0.1

(
βz0

104

)−1/2

. (4.41)
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Here, we define the Maxwell stress normalized by P0 in the laminar state as αM, lami.

From Equation (4.39), αM is given by

αM, lami = Λη,sat
1

4πP0

2B2
y . (4.42)

Ampére’s equation J = c/(4π) (∇×B) can current density to magnetic field. Substi-

tuting kz for ∇, we obtain the relation between Jx and By,

Jx ≈ − c

4π
kzBy. (4.43)

Because a current sheet is formed by anti-parallel By, Jx dominates J . Thus, we can

reasonably assume that

J ≈ Jx. (4.44)

Thus, using Equations (4.38), (4.42), (4.43), and (4.44), we obtain αM, lami as a function

of Jsat,

αM, lami =
4

k2H2
Λη,sat

(
Jsat
Ju

)2

≈ 0.52

(
βz0

104

)−1/2(
Jsat
Jmax

)2

, (4.45)

where we have used kz = 2π/H and normalized Jsat by the maximum current density

Jmax = 10Ju which is expected to be the saturated current in fully developed MRI

turbulence. This formula can be shown from the scaling relation of Equation (4.32),

substituting Λ−2
η of Equation (4.38) into Equation (4.32).

Then, we present maxwell stress in our model mimicking the real nonlinear Ohm’s law.

The J–E relation of our model at J > JEH is given by the power function with the

index γ (Equation (4.8)), J ∝ Eγ. Since we have already obtained the saturated ηsat

in Equation (4.37), the specified J–E relation can gives the saturated current density.

Once saturated current density Jsat is obtained, Equation (4.49) gives the Maxwell

stress αM which is the most interesting value. Thus, we here derive a specific formula

of αM when the J–E relation is given by the power function at saturated state. In the
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power function of the J–E relation, ηsat is given by, (Equation (4.10)),

ηsat(J) = η0

(
Jsat
JEH

) 1
γ
−1

. (4.46)

Multiplying this equation by Ω/v2Az0, the inverse is given by

Λη,sat = Λ0

(
Jsat
JEH

)1− 1
γ

(4.47)

Using Equation (4.44), we obtain

Jx = JEH

(
Λη, sat

Λ0

) γ
γ−1

. (4.48)

Substituting this equation for Jsat in Equation (4.49), we obtain

αM, lami ≈ 0.52

(
βz0

104

)−1/2(
JEH
Jmax

)2(
Λ0

Λη, sat

) 2γ
1−γ

(4.49)

≈ 0.52

(
βz0

104

)−1/2(
JEH
Jmax

)2
(
195

(
Λ0

10

)(
βz0

104

)1/2
) 2γ

1−γ

(4.50)

We have used γ = 0.1. Here, using γ = 0.1, the Maxwell stress in our model is written

as

αM, lami ≈ 1.68

(
βz0

104

)−1/2(
JEH
Jmax

)2(
βz0

104

)−7/18(
Λz, 0

10

)2/9

. (4.51)

This predictive formula of the Maxwell stress in the laminar state is available when

J–E relation during electron heating is given by a power function with the index γ =

0.1.

In usual, a nonlinear state of MRI can not be expressed by such the analytic expression

because of the nonlinearity of the fluctuations. Thus, when electron heating effectively

completely dies away MRI, the accretion stress will be exactly given by these quanti-

ties.
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Figure 4.14: Time variation of volume-averaged vertical velocity ⟨vz⟩normalized by
sound speed cs (upper panel) and dependence of time- and volume-averaged resistivity
⟨⟨vz⟩⟩ on time- and volume-averaged ⟨⟨J⟩⟩ (lower panel). The colors are the same as in
Figure 4.5.

4.4 Discussion

4.4.1 Vertical Diffusion of Dust

Here we describe the implication for dust dynamics in the disks. Under the classi-

cal planetesimal formation theories, the sedimentation of dust forms a dusty layer on

midplane which is gravitationally unstable. Then, the dust layer causes gravitational

instability and forms planetesimals. This model has been focused in terms of avoiding

meter size barrier. However, disk turbulence easily stir up the dust layer and diffuse it

. Therefore, weak disk turbulence may help the planetesimal formation.
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To investigate the potential of the laminar state to help dust settling, we investigate

vertical velocity at each parameter. The upper panel of Figure 4.14 shows the time

variation of vertical velocity, and the lower panel of Figure 4.14 shows dependence of

the time-averaged one on ⟨J⟩. We can see that vertical velocity drops at ⟨J⟩ /Ju ∼ 10−1

where the state of gas motion changes from turbulence to laminar flow. To settle down,

dust grains requires

St >
δv2z
c2s

, (4.52)

where St is the Stokes number, and δv2z is velocity dispersion. Under the minimum-mass

solar nebula in a hydrodynamic equilibrium, St can be expressed as

St = 1× 10−5

(
a

1 µm

)( r

10 AU

)3/2
exp

(
z2

2H2

)
. (4.53)

When the disk flow is laminar or J < Jturb, even 0.1 µm sized dust grains settles on

the midplane dust layer. The laminar state in e-heating zones may help formation of a

dust layer and planetesimal formation there.

4.4.2 Weak Disk Turbulence Suggested by Recent Observa-

tions

Electron heating would suppress the disk turbulence in a large region, but the direct

observability of our theory is still unknown. Therefore the theory might be supported

with a indirect manner. If electron heating is widely effective in protoplanetary disks,

the disk turbulence is expected to be weak. Unfortunately, an observation of disk

turbulence requires a high spectral resolution to distinguish Keplerian velocity (∼ 100cs)

and non-Keplerian velocity (∼ 0.1cs or ≲ 0.01cs, weak turbulence). Thus, the disk

turbulence in protoplanetary disk is actually vague, but the turbulence strength has

been expected to be α ∼ 0.1–0.01 from the accretion stress allowing lifetime of the

disks.

However, recent disk observations might possibly imply the weak disk turbulence. The

disk around HL Tau, which is thought to be the most typical protoplanetary disk

surrounding a T Tauri star (a young solar-type star), is recently observed by ALMA
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observatory having extremely high resolution, and then the amazing detailed figure

is unveiled with the high resolution (ALMA Partnership et al., 2015). The disk has

axisymmetric many rings and gaps approximately within 100 AU from the star. Because

such the young system (≤ 1-2 Myr; Briceño et al., 2002) is thought to be dynamic, many

researchers discuss the formation mechanism. Because gas giant planets are well known

to make a gap, the gaps might be formed by gas ginats. However, according to a core

accretion model of classical planet formation, gas giants take time to get their envelope

from the surrounding disk gas (several Myr). In addition, if each of the gaps is caved

by a gas giant, planets are orderly arranged with the separation of each planets of ∼ 10

AU. Thus, the orbital stability has been discussed (ALMA Partnership et al., 2015).

The other possibilities to explain the rings and gaps is some (gravitational) instabilities

(Takahashi & Inutsuka, 2014) and dust growth with/without a planet (Zhang et al.,

2015; Okuzumi et al., 2015).

It goes without saying that the gap formation mechanism is debated, but the disk

properties of HL Tau are of great interest too. Pinte et al. (2016) reproduced the

similar observational image with the radiative transfer simulation and obtained the

dust and gas properties. According to the paper, such a clear gap requires for the

disk to be geometrically thin, which means the weak turbulence (α ≲ a few 10−4).

That is because if the disk is thick, the back of the disk should be observed. Kataoka

et al. (2015) constrained the maximum dust particle size with a size distribution and

obtained relatively small maximum particle size (∼ 150 µm), using the dust continuum

data of ALMA and the polarization data of the other observatories. Because even the

maximum size of 3 mm assumed by Pinte et al. (2016) leads to α ≲ a few 10−4, the

maximum size of Kataoka et al. (2015) should lead to much smaller α value.

Moreover, Flaherty et al. (2015) observed a disk around A-type star, HD163296, and

obtained the spectral map which limits on non-thermal gas velocity dispersion, i.e.

turbulence. They constraints the velocity dispersion of turbulence to be less than

∼ 0.03cs which corresponds to α ≲ 10−3 outside ∼ 30 AU, from CO(3-2) transition.

The value is one order of magnitude less than typical α value of fully developed MRI

turbulence α ∼ 10−2. However, we have to note that the observation with the transition

line observe a sparse region of disks (≲ 5×10−3 g cm−2 or 3–5 H in their model) and the
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precise information of disk turbulence in a dense region has still not been obtained. In

future, a observatory having higher spectral resolution will clearly reveal the turbulence

distribution of the disks.





Chapter 5

Summary and Conclusion

5.1 Summary

In this work, we investigated the quantitative effect of electron heating on the MRI with

MHD simulation including the increasing resistivity by the electron heating. First, we

presented the zones where electron heating can suppress MRI turbulence and showed

that the zones dominate large regions that have been is in a vigorous turbulent state

so far. However, how much electron heating suppresses the MRI was still unknown.

We perform MHD simulation to address the nonlinear evolution of MRI including the

resistivity by electron heating. We introduce a simple analytic resistivity model that

enables us to treat the increasing resistivity. We summarize the results as follows:

• We find an clear relation between magnetic turbulence strength and its current

density in Figure 4.8 in Section 4.2. The relation means that a lower current leads

to lower turbulence strength.. Thus, we confirmed the electron heating suppresses

MRI turbulence when current density is well suppressed by electron heating.

• We find that when turbulence completely dies away, laminar accretion flow is

caused by ordered magnetic field in Figure 4.3 in Section 4.2. The growth of

magnetic field stops at the sinusoidal structure because the resistivity increases

at the current sheet,

• Based on the simulation results and the scaling relation between the accretion

93
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stress and current density, we obtain a formula that successfully predicts the

accretion stress in the presence of electron heating once current density is given. In

a protoplanetary disk, the current density can be estimated by using the current-

dependent resistivity and the saturated resistivity. Thus, we can predict the

accretion stress in extensive regions where the electron heating occur. This helps

us to construct realistic planet formation theory.

This paper have revealed the importance of electron heating on the nonlinear evolution

of MRI. Disk turbulence in protoplanetary disks critically impacts on the disk evolution

and planet formation. A role of electron heating should be elucidated in order to

construct realistic planet formation models.

In this work, we have neglected the stratified density structure. However, our results

might depends on the simulation box size in a vertical direction. We have to note

that these results is based just on the simple analytic J–E relation. In reality, the

electron heating rises the N-shaped nonlinear Ohm’s law. Of course, finally, the real

effect of electron heating on MRI is investigated by considering the realistic resistivity

model with a MHD simulation. However, this work first unveils the relation of Maxwell

stress and current density and the state when MRI completely dies away by suppressing

current density. The importance of current density in MRI is stressed. We conclude

that the reliability of the suppression of MRI by electron heating has been shown by

this work.

5.2 Future Work

We will address the following in future work.

Development of General Nonideal MHD Effects Amplified Electron Heat-

ing

In this study, we have neglected the all nonideal MHD effects amplified the electron

heating except for the Ohmic dissipation. We will develop an applicable manner to Hall

effect and ambipolar diffusion. This work is done with Satoshi Okuzumi.
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Inspection of MRI Activity in Disk around HL Tau

Recently, Pinte et al. (2016) suggested weak turbulence in the disk around HL Tau. So

far young disk is thought to be dynamic because of high accretion rate onto the star

and free fall to the disk from the envelope. The accretion rate of the disk surrounding

HL Tau was estimated 8.7× 10−7 M⊙ yr−1 as an upper limit (Beck et al., 2010). This

corresponds to α ∼ 0.01 at 100 AU, whereas Pinte et al. (2016) suggested α ≲ 10−4 to

reproduce the observation. This seems to be inconsistent, but we have to note that the

two α parameters shows different physics. α in mass accretion rate comes from accretion

stress, whereas α in Pinte et al. (2016) comes from vertical velocity dispersion. Thus,

the gap of the two suggest high Schmidt number, which is a ratio of accretion viscosity

to diffusion coefficient. Because our work suggested that laminar state leads to high

Schmidt number (see Section 4.4.1), the laminar state of our work is good for this

point.

We will first investigate the possibility that MRI in the disk is stabilized by nonideal

MHD including suppression of MRI by electron hating. First, using some suggested disk

profile (density, temperature and so on), we evaluate dimensionless number indicating

efficiency of nonideal MHD effects. In that case, the effects includes Ohmic dissipation,

Hall effect, and Ambipolar diffusion, but not include electron heating. Then, we strict

the parameter (magnetic field strength, X-ray luminosity, and so on) to reproduce the

weak turbulence in a whole region of HL Tau’s disk. We will also evaluate the α

parameter suggested from several nonideal MHD simulations. After that, we introduce

the electron heating effect. Comparing the two restricted parameters with respect to

accretion rate and diffusion coefficient, we will investigate the plausibilities.

Formation of Ring Structure in Disk around HL Tau

In addition to the weak turbulence has a potential to explain a formation mechanism of

the ring structure. The observed ring width is approximately 10 AU. Although several

formation mechanisms are proposed, there is no consensus. One possible formation

mechanism is secular gravitational instability (Youdin, 2005a,b, 2011; Takahashi &

Inutsuka, 2014), which is gravitational instability caused by gas friction between gas
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and dust. Takahashi & Inutsuka (2014) found the most unstable wavelength in the

radial direction is typically 10 AU in weak turbulence. If the instability grows globally,

the rings whose width is 10 AU forms.

We will investigate possibility of secular gravitational instability in disk around HL

Tau. The weak turbulence has already been suggested (Pinte et al., 2016), but the

distribution of turbulence strength is unknown. We calculate turbulence strength simply

assuming the existence of dead zone and e-heating zone. This work will be performed

with Takahashi Sanemichi.

Gravitational Instability Far from the Star

In protoplanetary disks which is one kind of accretion disks, the disk gas accretes onto

the star. If the disk turbulence presents, the accretion is driven by turbulent viscos-

ity closely related to turbulence strength. Thus, in the weak turbulence region, e.g.

dead zone, accreted gas is accumulated and eventually causes gravitational instability

(Sano et al., 2000; Martin & Lubow, 2011). The dead zones, where MRI is completely

suppressed, lies within ∼ 20 AU in typical disk at early stage. Since electron heating

enlarges the zone where MRI is completely or moderately suppressed, gravitational in-

stability would occurs in a larger region. This might suggests gas giant far from the

star which is formed by the gravitational instability. The formation mechanism of such

gas giants is still mysterious.

We will investigate how electron heating enlarges the gravitationally unstable region.

The stress–current relation presented in this work gives accretion stress in each position.

Assuming the steady and gravitationally stable accretion disk driven by the Maxwell

stress, we calculate dependence of accretion rate on surface density within the gravita-

tionally unstable surface density, i.e. Toomre’s gravitational unstable condition. Next,

assuming a gas accretion from the outer disk by effective turbulent viscosity, we give

the constant accretion rate. If the stable disk is realizable, there is a surface density

realizing the constant accretion rate. In other words, if there is no surface density re-

alizing the constant accretion rate, the disk goes unstable. We will investigate whether

the disk can be stable or not at each position.
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Simulation with the Real Nonlinear Ohm’s Law

We will try to consider the real dependence of resistivity on E. In MHD equation

system, the growth of electric field strength can not be explicitly treated. In addition,

when dσ/dE < 0, electric field strength is unstable. The time scale is remarkably fast,

i.e. ∼ 10−4–10−2 s−1. Thus, the real nonlinear Ohm’s law is not available without any

idea.

We will develop the physically exact solution by focusing the existence of physics of

more slower time. Actually, the nonlinear Ohm’s law is obtained by assuming the

charge equilibrium. However, in such the short time interval, the equilibrium is broken.

Thus, we use typical time scale of charge reaction.

Simulation in Stratified Box

In this work, we perform MHD simulation with unstratified disk. Although density

varies in the vertical direction in a hydrostatic equilibrium in reality, the unstratified

disk is thought to be justified by assuming that the perturbation mode is limited in gas

scale height H. Thus, if unstable mode is limited within typically scale hight even in

the stratified simulation box, our results is reliable in the stratified case. However, our

results would be controlled by the size of simulation box (see Figure 4.11). Thus, the

our result will be modified. In order to investigate the stratified case, we will perform

the similar MHD simulation again in the stratified simulation box.
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Appendix A

Appendix

A.1 Time Evolution of Simulation Results

We enumerate results of section 4.2 with respect to time-dependent value.

105
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Figure A.1: Time evolution of magnetic field strength in the case of JEH/Ju = 0.03.
Each panel shows time, t = 0 (upper left), 10 (upper right), 20 (lower left), and 30
(lower right) orbits. The colors shows the magnetic fields strength |B| normalized by
the maximum value.
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Figure A.2: Same as Figure A.1, but in the case of JEH/Ju = 0.3.
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Figure A.3: Same as Figure A.1, but in the case of JEH/Ju = 3.
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Figure A.4: Same as Figure A.1, but in the ideal MHD case.



110 APPENDIX A. APPENDIX

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0  5  10  15  20  25  30

R
ad

ia
l K

in
et

ic
 E

ne
rg

y 
[P

0]

Time [Orbits]

34
35
36
37
38
39
40
41
42

10-2

10-1

100

 0  5  10  15  20  25  30

A
zi

m
ut

ha
l K

in
et

ic
 E

ne
rg

y 
[P

0]

Time [Orbits]

34
35
36
37
38
39
40
41
42

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

 0  5  10  15  20  25  30

V
er

ti
ca

l K
in

et
ic

 E
ne

rg
y 

[P
0]

Time [Orbits]

34
35
36
37
38
39
40
41
42

10-2

10-1

100

 0  5  10  15  20  25  30

K
in

et
ic

 E
ne

rg
y 

[P
0]

Time [Orbits]

34
35
36
37
38
39
40
41
42

Figure A.5: Time-evolution of kinetic energy in x (upper left), y (upper right), z (lower
left) and the total (lower right) direction. The colors show computational ID which
means difference of JEH.
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Figure A.6: Time-evolution of kinetic energy in x (upper left), y (upper right), z (lower
left) and the total (lower right) direction. The colors show computational ID which
means difference of JEH.
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Figure A.7: Time-evolution of current density in x (upper left), y (upper right), z
(lower left) and the total (lower right) direction. The colors show computational ID
which means difference of JEH.
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Figure A.8: Time variation of η. The colors shows the same as Figure A.5.
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Figure A.9: Time variation of E. The colors shows the same as Figure A.5.
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Figure A.10: Time variation of Λ. The colors shows the same as Figure A.5.
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Figure A.11: Time variation of η. The colors shows the same as Figure A.5
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