Publications of our lab members
2023 and papers in press
[52] Ohta, K., Suehiro, S., Kawaguchi, S., Okuda, Y., Wakamatsu, T., Hirose, K., Ohishi, Y., Kodama, M., Hirai, S., & Azuma, S. Measuring the electrical resistivity of liquid iron to 1.4 Mbar. Physical Review Letters, 130, 266301.
[51] Nagaya, Y., Gomi, H., Ohta, K., & Hirose, K. Equations of state for B2 and bcc Fe1-xSix. Physics of Earth and Planetary Interiors, 341, 107046.
[50] Ohta, K. Ammonia and the ice giants. Nature Physics, https://doi.org/10.1038/s41567-023-02081-9.
[49] Park, Y., Yonemitsu, K., Hirose, K., Kuwayama, Y., Azuma, S., & Ohta, K. Viscosity of Earth’s inner core constrained by Fe-Ni interdiffusion in Fe-Si alloy in an internal-resistive-heated diamond anvil cell. American Mineralogist, 108, 1064–1071.
[48] Okuda, Y & Ohta, K. Heat flow from the Earth's core inferred from experimentally determined thermal conductivity of the deep lower mantle. Core-mantle Co-evolution: An interdisciplinary approarch, AGU monograph, 133–144..
[47] Hasegawa, A., Ohta, K., Yagi, T., & Hirose, K. Thermal conductivity of platinum and periclase under extreme conditions of pressure and temperature. High Pressure Research, https://doi.org/10.1080/08957959.2023.2193892.
2022
[46] Okuda, Y., Oka, K., Kubota, Y., Inada, M., Kurita, N., Ohta, K., & Hirose, K. High P-T impedance measurements using a laser-heated diamond anvil cell. Review of Scientific Instruments, 93, 105103.
[45] Wakamatsu, T., Ohta, K., Tagawa, S., Yagi, T., Hirose, K., & Ohishi, Y. Compressional wave velocity for iron hydrides to 100 gigapascals. Physics and Chemistry of Minerals, 49, 17, https://doi.org/10.1007/s00269-022-01192-8.
[44] Aoyama, T., Ohta, K., Shimizu, K., & Ohgushi, K. Persistent spin-orbit Mott insulating state in highly compressed post-perovskite CaIrO3. Journal of the Physical Society of Japan, 91, 045003. https://doi.org/10.7566/JPSJ.91.045003
2021
[43]
Zhang, Z., Zhang, D.B., Onga, K., Hasegawa, A., Ohta, K., Hirose, K., & Wentzcovitch, R.
Thermal conductivity of CaSiO3 perovskite at lower mantle conditions
Physical Review B, 104, 184101. https://doi.org/10.1103/PhysRevB.104.184101
[42]
Sakuraba, S., Kurokawa, H., Genda, H., & Ohta, K.
Numerous chondritic impactors and oxidized magma ocean set Earth’s volatile depletion
Scientific Reports, 11, 20894. https://doi.org/10.1038/s41598-021-99240-w
[41]
Okuda, Y., Ohta, K., Nishihara, Y., Hirao, N., Wakamatsu, T., Suehiro, S., Kawaguchi, S., & Ohishi, Y.
Low-spin ferric iron in primordial bridgmanite crystallized from a deep magma ocean
Scientific Reports, 11, 19471. https://doi.org/10.1038/s41598-021-98991-w
[40]
Ohta, K., & Hirose, K.
The thermal conductivity of the Earth's core and implications for its therma and compositional evolution
National Science Review, 8, nwaa303. https://doi.org/10.1093/nsr/nwaa303
[39]
Okuda, Y., Kimura, S., Ohta, K., Park, Y., Wakamatsu, T., Mashino, I., & Hirose, K.
A cylindrical SiC heater for an externally heated diamond anvil cell to 1500 K
Review of Scientific Instruments, 92, 015119. https://doi.org/10.1063/5.0036551
2020
[38]
Ohta, K., Wakamatsu, T., Kodama, M., Kawamura, K., & Hirai, S.
Laboratory-based X-ray computed tomography for 3D imaging of samples in a diamond anvil cell in situ at high pressures
Review of Scientific Instruments, 91, 093703 (2020). https://doi.org/10.1063/5.0014486
[37]
Okuda, Y., Ohta, K., Sinmyo, R., Hirose, K., & Ohishi, Y.
Anomarous compressibility in (Fe,Al)-bearing bridgmanite: implications for the spin state of iron
Physics and Chemistry of Minerals, 47, 40 (2020). https://doi.org/10.1007/s00269-020-01109-3
[36]
Okuda, Y., Ohta, K., Hasegawa, A., Yagi, T., Hirose, K., Kawaguchi, S. I., & Ohishi, Y.
Thermal conductivity of Fe-bearing post-perovskite in the Earth's lowermost mantle
Earth and Planetary Science Letters, 547, 116466 (2020). https://doi.org/10.1016/j.epsl.2020.116466
[35]
Inoue, H., Suehiro, S., Ohta, K., Hirose, K., & Ohishi, Y.
Resistivity saturation of hcp Fe-Si alloys in an internally heated diamond anvil cell: A key to assessing the Earth's core conductivity
Earth and Planetary Science Letters 543, 116357 (2020). https://doi.org/10.1016/j.epsl.2020.116357
[34]
Kato, C., Umemoto, K., Ohta, K., Tagawa, S., Hirose, K., & Ohishi, Y.
Stability of fcc phase FeH to 137 GPa
American Mineralogist 105, 917-921 (2020). DOI: https://doi.org/10.2138/am-2020-7153
2019
[33]
Suehiro, S., Wakamatsu, T., Ohta, K., Hirose, K., & Ohishi, Y.
High-temperature electrical resistivity measurements of hcp iron to Mbar pressure in an internally resistive heated diamond anvil cell
High Pressure Research 39, 579-587 (2019). https://doi.org/10.1080/08957959.2019.1692008
[32]
Matsuoka, T., Muraoka, S., Ishikawa, T., Niwa, K., Ohta, K., Hirao, N., Kawaguchi, S., Ohishi, Y., Shimizu, K., & Sasaki, S.
Hydrogen-storing salt NaCl(H2) synthesized at high pressure and high temperature
The Journal of Physical Chemistry C 123, 25074-25080 (2019). https://doi.org/10.1021/acs.jpcc.9b06639
[31]
Hasegawa, A., Yagi, T., & Ohta, K.
Combination of pulsed light heating thermoreflectance and laser-heated diamond anvil cell for in-situ pressure-temperature thermal diffusivity measurements
Review of Scientific Instrum 90, 074901 (2019). https://doi.org/10.1063/1.5093343
[30]
Okuda, Y., Ohta, K., Sinmyo, R., Hirose, K., Yagi, T, & Ohishi, Y.
Effect of spin transition of iron on the thermal conductivity of (Fe,Al)-bearing bridgmanite
Earth and Planetary Science Letters 520, 188-198 (2019). https://doi.org/10.1016/j.epsl.2019.05.042
[29]
Hasegawa, A., Ohta, K., Yagi, T., Hirose, K., Okuda, Y., & Kondo, T.
Composition and pressure dependence of lattice thermal conductivity of (Mg,Fe)O solid solutions
Comptes Rendus Geoscience 351, 229-235 (2019). https://doi.org/10.1016/j.crte.2018.10.005
[28]
Ohta, K., Suehiro, S., Hirose, K., & Ohishi, Y.
Electrical resistivity of fcc phase iron hydrides at high pressures and temperatures
Comptes Rendus Geoscience 351, 147-153 (2019). https://doi.org/10.1016/j.crte.2018.05.004
2018
[27]
Ohta, K., Nishihara, Y., Sato, Y., Hirose, K., Yagi, T., Kawaguchi, S., Hirao, N., & Ohishi Y.
An experimental examinaion of thermal conductivity anisotropy in hcp iron
Frontiers in Earth Science 6, 176 (2018). https://doi.org/10.3389/feart.2018.00176
[26]
Wakamatsu, T., Ohta, K., Yagi, T., Hirose, K., & Ohishi, Y.
Measurements of sound velocity in iron-nickel alloys by femtosecond laser pulses in a diamond anvil cell
Physics and Chemistry of Minerals 45, 589-595, (2018). https://doi.org/10.1007/s00269-018-0944-3
2017
[25]
Suehiro, S., Ohta, K., Hirose, K., Morard, G., & Ohishi Y.
The influence of sulfur on the electrical resistivity of hcp iron: implications for the core conductivity of Mars and Earth
Geophysical Research Letters 44, 8254-8259 (2017). https://doi.org/10.1002/2017GL074021
[24]
Matsuoka, T., Kuno, K., Ohta, K., Sakata, M., Nakamoto, Y., Hirao, N., Ohishi, Y., Shimizu, K., Kume, T., & Sasaki, S.
Lithium polyhydrides synthesized under high pressure and high temperature
Journal of Raman Spectroscopy 48, 1222-1228 (2017). https://doi.org/10.1002/jrs.5183
[23]
Okuda, Y., Ohta, K., Yagi, T., Sinmyo, R., Wakamatsu, T., Hirose, K., & Ohishi, Y.
The effect of iron and aluminum incorporation on lattice thermal conductivity of bridgmanite at the Earth's lower mantle
Earth and Planetary Science Letters 474, 25-31 (2017). https://doi.org/10.1016/j.epsl.2017.06.022
[22]
Ohta, K., Yagi, T., Hirose, K., & Ohishi, Y.
Thermal conducitivity of ferropericlase in the Earth's lower mantle
Earth and Planetary Science Letters 465, 29-37 (2017). https://doi.org/10.1016/j.epsl.2017.02.030
2016
[21]
Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K., & Ohishi, Y.
Experimental determination of the electrical resistivity of iron at Earth's core conditions
Nature 534, 95-98 (2016). https://doi.org/10.1038/nature17957
[20]
Tagawa, S., Ohta, K., Hirose, K., Kato, C., & Ohishi, Y.
Compression of Fe-Si-H alloys to core pressures
Geophysical Research Letters 43, 3686-3692 (2016). https://doi.org/10.1002/2016GL068848
2015
[19]
Ohta, K., Ichimaru, K., Einaga, M., Kawaguchi, S., Shimizu, K., Matsuoka, T., Hirao, N., & Ohishi, Y.
Phase boundary of hot dense fluid hydrogen
Scientific Reports, 5, 16560, doi:10.1038/srep16560.
[Article link] [Press release. Tokyo Tech] [Press release, SPring-8]
[18]
Kuno, K., Matsuoka, T., Nakagawa, T., Hirao, N., Ohishi, Y., Shimizu, K., Takahama, K., Ohta, K., Sakata, M., Nakamoto, Y., Kume, T., Sasaki, S.
A laser heating of Li in hydrogen: Possible synthesis of LiHx
High Pressure Research, 35, 16-21, DOI:10.1080/08957959.2014.999677.
[Article]
2014
[17]
Imada, S., Ohta, K., Yagi, T., Hirose, K., Yoshida, H., and Nagahara, H.
Measurements of lattice thermal conductivity of MgO to core-mantle boundary pressures
Geophysical Research Letters, 41, doi:10.1002/2014GL060423.
[Article]
[16]
Ohta, K., Fujino, K., Kuwayama, Y., Kondo, T., Shimizu, K., and Ohishi, Y.
Highly conductive iron-rich (Mg,Fe)O magnesiowüstite and its stability in the Earth’s lower mantle
Journal of Geophysical Research, Solid Earth, 119, DOI: 10.1002/2014JB010972.
[Article]
[15]
Matsuoka, T., Sakata, M., Nakamoto, Y., Takahama, K., Ichimaru, K., Mukai, K., Ohta, K., Hirao, N., Ohishi, Y., and Shimizu, K.
Pressure-induced re-entrant metallic phase of lithium
Physical Review B, 89, 144103.
[Article] [Press release]
[14]
Ohta, K., Yagi, T., and Hirose, K.
Thermal diffusivities of MgSiO3 and Al-bearing MgSiO3 perovskites
American Mineralogist, 99, 94-97.
[Article]
2013
[13]
Gomi, H., Ohta, K., Hirose, K., Labrosse, S., Caracas, R., Verstraete, M. J., Hernlund, J. W.
The high conductivity of iron and thermal evolution of the Earth’s core
Physics of the Earth and Planetary Interiors, 224, 88-103.
[Article]
2012
[12]
Sugimura, E., Komabayashi, T., Ohta, K., Hirose, K., Ohishi, Y., and Dubrovinsky, L.
Experimental evidence of superionic conduction in H2O ice
Journal of Chemical Physics, 137, 194505.
[Article]
[11]
Ohta, K., Yagi, T., Taketoshi, N., Hirose, K., Komabayashi, T., Baba, T., Ohishi, Y., and Hernlund, J.
Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core-mantle boundary
Earth and Planetary Science Letters, 349-350, 109-115.
[Article]
[10]
Ohta, K., Cohen, R. E., Hirose, K., Haule, K., Shimizu, K., and Ohishi, Y.
Experimental and theoretical evidence for pressure-induced metallization in FeO with the rock-salt type structure
Physical Review Letters, 108, 026403
[Article], [Press release]
2011
[9]
Ozawa, H., Hirose, K., Ohta, K., Ishii, H., Hiaoka, N., Ohishi, Y., and Seto, Y
Spin crossover, structural change, and metallization in NiAs-type FeO at high pressure
Physical Review B, 84, 134417
[Article]
[8]
Yagi, T., Ohta, K., Kobayashi, K., Taketoshi, N., Hirose, K., and Baba, T
Thermal diffusivity measurement in diamond anvil cell using light pulse thermoreflectance technique
Measurement Science and Technology, 22, 024011
[Article]
2010
[7]
Iizuka, T., McCulloch, M.T., Komiya, T., Shibuya, T., Ohta, K., Ozawa, H., Sugimura, E., and Collerson, K.D.
Monazite geochronology and geochemistry of meta-sediments in the Narryer Gneiss Complex, Western Australia: constraints on the tectonothermal history and provenance
Contributions to Mineralogy and Petrology, 160, 803-823
[Article]
[6]
Ohta, K., Hirose, K., Shimizu, K., and Ohishi, Y.
High-pressure experimental evidence for metal FeO with normal NiAs-type structure
Physical Review B, 82, 174120
[Article]
[5]
Ohta, K., Hirose, K., Shimizu, K., Sata, N., and Ohishi, Y.
The electrical resistance measurements of (Mg,Fe)SiO3 perovskite at high pressures and implications for electronic spin transition of iron
Physics of the Earth and Planetary Interiors, 180, 154-158
[Article]
[4]
Ohta, K., Hirose, K., Ichiki, M., Shimizu, K., Sata, N., and Ohishi, Y.
Electrical conductivities of pyrolitic mantle and MORB materials up to the lowermost mantle conditions
Earth and Planetary Science Letters, 289, 497-502
[Article]
2008
[3]
Ohta, K., Onoda, S., Hirose, K., Sinmyo, R., Shimizu, K., Sata, N., Ohishi, Y., and Yasuhara, A.
The electrical conductivity of post-perovskite in Earth’s D” layer
Science, 320, 89-91
[Article]
[2]
Ohta, K., Hirose, K., Lay, T., Sata, N., and Ohishi, Y.
Phase transitions in pyrolite and MORB at lowermost mantle conditions: Implications for a MORB-rich pile above the core-mantle boundary
Earth and Planetary Science Letters, 267, 107-117
[Article]
2007
[1]
Ohta, K., Hirose, K., Onoda, S., and Shimizu, K.
The effect of iron spin transition on electrical conductivity of (Mg,Fe)O magnesiowüstite
Proceedings of the Japan Academy, Ser. B, 83, 97-100
[Article]