Maximum size of a poster is 90 cm (W) x 120 cm (H).
Therefore the size of A0 portrait,
84.1 cm (W) x 118.9 cm (H), is recommended.
Please put up your poster(s) at an appropriate place
of a poster board shown by your poster number.
Poster numbers assigned as three digits are found
in this poster program site as well as
the SEDI 2014 Abstract Volume (10,682,643 bytes).
101 |
L. Bai, J. Ritsema, and N. Ghani |
Mantle transition zone discontinuities beneath China from SS precursors |
102 |
V. Thio, L. Cobden, and J. Trampert |
Seismic signature of a hydrous mantle transition zone |
103 |
S. Cottaar and A. Deuss |
Probing the mantle transition zone beneath Europe with Pds receiver functions |
104 |
K. Hamada and K. Yoshizawa |
Phase and amplitude measurements of surface waves with inter-station waveform fitting using USArray |
105 |
N. Hashimoto and S. Kaneshima |
Inhomogeneous structure in the deep mantle estimated from PKP precursors observed at Hi-net |
106 |
C. Houser |
The absence of water in the mantle transition zone according to seismic data |
107 |
J. Jenkins, A. Deuss, and B. White |
Transition zone topography beneath the Iceland region from P to S receiver functions |
108 |
K. Kelevitz, N. Houlie, L. Boschi, T. Nissen-Meyer, D. Giardini, and M. Rothacher |
Long-period GPS waveforms. What can GPS bring to Earth seismic velocity models? |
109 |
M. Obayashi |
Finite-frequency P-wave tomography for French Polynesia |
110 |
M. Saki, C. Thomas, S. Nippress, and S. Lessing |
Topography of upper mantle seismic discontinuities beneath the North Atlantic: the Azores, Canary and Cape Verde plumes |
111 |
A. Shito, D. Suetsugu, and T. Furumura |
The Po/So waves observed in the Philippine Sea |
201 |
S. Atkins, P. J. Tackley, A. P. Valentine, and J. Trampert |
Inverting two billion years of mantle history |
202 |
M. D. Ballmer, N. C. Schmerr, J. Ritsema, and M. H. Motoki |
Mantle compositional layering revealed by slab stagnation in the uppermost lower mantle |
203 |
M. Bocher, N. Coltice, and A. Fournier |
A sequential data assimilation approach for the joint reconstruction of mantle convection and surface tectonics |
204 |
A. L. Bull, M. Domeier, and T. H. Torsvik |
Paleozoic plate motion history and the longevity of deep mantle heterogeneities |
205 |
F. Deschamps |
Electrical conductivity and CMB topography inferred from lower mantle thermo-chemical structure and dynamics |
206 |
B. J. Foley, D. Berocivic, and L. T. Elkins-Tanton |
Initiation of plate tectonics from post-magma ocean thermochemical convection |
207 |
I. S. Fomin and P. J. Tackley |
Melting in the Earth's lower mantle |
208 |
E. M. Heien, H. Matsui, and L. Kellogg |
Advanced development and benchmarking of codes for mantle convection and dynamo simulation |
209 |
C. Jain, A. Rozel, and P. Tackley |
The effect of plumes and a free surface on mantle dynamics with continents and self-consistent plate tectonics |
210 |
M. O. Larson and K. Okino |
Geodynamic models, and geochemical forward modeling of a hotspot/mid-ocean ridge interaction region |
211 |
D. L. Lourenco and P. J. Tackley |
Early evolution and dynamics of Earth from a molten initial stage |
212 |
C. Mallard, N. Coltice, L. Bello, R. D. Muller, and P. J. Tackley |
Plate tectonics of convection models |
213 |
M. Morishige and P. E. van Keken |
Numerical investigation on the 3D thermal structure around the junction between Japan and Kurile arcs |
214 |
T. Nakagawa, T. Nakakuki, and H. Iwamori |
Global-scale water circulation in thermo-chemical mantle convection in a spherical geometry |
215 |
T. Nakakuki, T. Kaneko, A. Nakao, and H. Iwamori |
Water transport to the deep mantle dynamically coupled with a plate-mantle convection system |
216 |
A. Rozel and P. Tackley |
Impact of a depth-dependent rheology on the likelihood of plate tectonic: updated version of the boundary layer theory in the stagnant lid regime |
217 |
K. Vilella and C. G. Farnetani |
Dynamic implications of a viscosity change at mid-mantle depths due to iron partitioning |
218 |
I. Rose and B. Buffett |
Rates of true polar wander in convecting planets |
219 |
B. Delbridge, B. Buffett, S. Kita, and T. Matsuzawa |
Application of thin sheet dynamics to subduction zones: implications for lithospheric rheology, seismogenesis and estimates of bending disipation |
301 |
C.-E. Boukare and Y. Richard |
Thermodynamics of the MgO-FeO-SiO2 system up to 140 GPa: application to a crystallizing magma ocean |
302 |
D. A. Frost, S. Rost, and N. Selby |
A global study of the lowermost mantle using short and long period scattered PKKP waves (PK.KP) |
303 |
Y. He, L. Wen, and T. Zheng |
Seismic evidence for a localized low-velocity structure around the D" region beneath Kamchatka |
304 |
P. J. Koelemeijer, A. Deuss, J. Ritsema, H.-J. van Heijst, B. S. A. Schuberth, and D. R. Davies |
Long wavelength structure of Earth's lowermost mantle from normal mode splitting inversions and geodynamic modelling |
305 |
N. Mancinelli, P. Sheaer, and C. Thomas |
Mapping small-scale structure in the deep Earth: resolving the source-receiver ambiguity of PKP precursors |
306 |
T. Nakagawa |
On thermal and magnetic evolution of Earth's core in a coupled core-mantle evolution model: plausibility of high core thermal conductivity |
307 |
S. Pachhai, H. Tkalcic, and J. Dettmer |
Trans-dimensional Bayesian inversion for ultra low velocity zones: complex ULVZ beneath the east of the Philippines |
308 |
H. Shimizu and H. Utada |
Influence of the electrical conductivity heterogeneity in the D" layer on the flow and magnetic field at the surface of the core |
309 |
S. Tanaka, H. Kawakatsu, M. Obayashi, Y. J. Chen, J. Ning, S. Grand, F. Niu, and J. Ni |
P-wave velocity structure at the base of the mantle near the western edge of the Pacific large-low velocity province |
310 |
A. Nowacki, J. Wookey, A. M. Walker, and J.-M. Kendall |
Dynamics of the lowermost mantle: what shear wave splitting can tell us |
401 |
Z. Shen and Y. Ai |
Using pre-critical PcP-PKiKP phase to constrain ICB heterogeneity below East Asia |
402 |
M. I. Bergman, Y. Al-Khatatbeh, D. J. Lewis, and M. C. Shannon |
Deformation of directionally solidified alloys: evidence for microstructural hardening of Earth's inner core? |
403 |
A. Deuss, J. Irving, K. Lythgoe, and L. Waszek |
Inner core anisotropy and heterogeneity from combined body wave and normal mode tomography |
404 |
M. Lasbleis, R. Deguen, S. Labrosse, and P. Cardin |
Dynamics induced by the Lorentz force in the growing inner core |
405 |
K. Lythgoe, J. Rudge, J. Neufeld, and A. Deuss |
The feasibility of thermal and compositional convection in Earth's inner core |
406 |
T. Ohtaki, S. Kaneshima, and K. Kanjo |
Seismic model near the inner core boundary in the south polar region |
407 |
S. Pachhai, H. Tkalcic, and G. Masters |
A new non-linear technique for measurement of splitting functions using normal modes of the Earth |
408 |
S. Rosat, Y. Rogister, and H. Legros |
The translational mode of the inner core, the so-called Slichter mode: amplitude and associate phase transformations |
409 |
S. Takehiro |
Influence of surface displacement on fluid motions induced by horizontally heterogeneous Joule heating in the inner core of the earth |
410 |
R. Iritani, N. Takeuchi, and H. Kawakatsu |
Intricate quasi-hemispherical property of frequency dependence of inner core attenuation and its implication |
411 |
S. Tanaka and H. Tkalcic |
Complex inner core boundary from frequency characteristics of the reflection coefficients of PKiKP waves observed by Hi-net |
412 |
A. Lincot, R. Deguen, S. Markel, and P. Cardin |
Seismic response and anisotropy of a model hcp iron inner core |
413 |
H. Godwin, L. Waszek, and A. Deuss |
The velocity structure at the top of Earth's inner core |
414 |
L. Waszek and A. Deuss |
Lateral variations at the inner core boundary: implications for inner core processes |
501 |
J. M.-C. Adam and B. Romanowicz |
Global scale observation of scattered energy from the core: seismic constraints on the F-layer |
502 |
J. M.-C. Adam and B. Romanowicz |
PKP travel-time residuals: signature of anisotropy in the inner-core or structures in the outer-core? |
503 |
A. Biggin, N. Suttie, J. Aubert, T. Torsvik, B. Steinberger, and R. Holme |
A major palaeomagnetic field transition ~ 140 million years ago: evidence and implications |
504 |
W. Brown, J. Mound, and P. Livermore |
Jerks in stochastic synthetic magnetic fields |
505 |
M. C. Brown, F. Donadini, A. Nilsson, S. Panovska, U. Frank, K. Korhonen, M. Korte, and C. G. Constable |
An update to the GEOMAGIA50 palaeomagnetic database |
506 |
C. Constable, M. Korte, and S. Panovska |
An assessment of Holocene geomagnetic field structures |
507 |
E. A. Day, S. Cottaar, C. Tann, J. C. E. Irving, and A. Deuss |
Stratification at the top of the outer core: constraints from SmKS and PmKP phases |
508 |
C. C. Finlay, N. Olsen, and L. Toffner-Clausen |
Use of Swarm data to study the core surface magnetic field |
509 |
G. Helffrich and S. Kaneshima |
Increased light element concentration at the base of the Earth's core |
510 |
K. Hori, C. A. Jones, J. Wicht, and H. Shimizu |
Slow MC-Rossby waves in a convection-driven dynamo: implications for geomagnetic secular variation |
511 |
G. Hulot, A. Khokhlov, and C. L. Johnson |
The time-averaged paleomagnetic field: first results from a new giant Gaussian process inverse modeling approach |
512 |
M. Korte, U. Frank, and M. Brown |
How unique is the present geomagnetic South Atlantic anomaly? |
513 |
K. Li, A. Jackson, and P. W. Livermore |
Towards magnetic sounding of the Earth's core by an adjoint method |
514 |
N. Mochizuki, S. Fujii, T. Hasegawa, M. Okada, and H. Shibuya |
Paleointensity determination of welded tuffs for absolute calibration of relative paleointensity stacks |
515 |
T. Ohtaki and S. Kaneshima |
Fine seismic velocity structure of the lowermost outer core (F-layer) in the "western hemisphere" |
516 |
G. R. Sarson, R. J. Boys, A. Golightly, and D. A. Henderson |
Modelling geomagnetic reversals as a Gaussian Cox process |
517 |
R. Senftleben, M. Korte, and C. Finlay |
Combining archeomagnetic and historical data to create a global magnetic field model of the Earth over the last 1000 years |
518 |
J.-P. Valet |
Characteristics of the transitional geomagnetic field from high resolution volcanic records |
519 |
T. Yamazaki and Y. Yamamoto |
Paleointensity of the geomagnetic field in the late Cretaceous and earliest Paleogene obtained from drill cores of the Louisville seamount trail |
601 |
H. Amit |
Can downwelling at the top of the Earth's core be detected in the geomagnetic secular variation? |
602 |
P. Marti, M. A. Calkins, J. M. Aurnou, and K. Julien |
An efficient sparse approach for core flow problems |
603 |
N. Featherstone, J. Aurnou, B. Brown, B. Buffett, G. Glatzmaier, E. Heien, H. Matsui, P. Olson, and S. Stanley |
The Rayleigh Convection Code: a highly scalable, community pseudo-spectral code for MHD problems in spherical geometry |
604 |
. | withdrawn |
605 |
M. Avery, C. Constable, C. Davies, and D. Gubbins |
Robust observations of asymmetry in growth and decay rates of the axial dipole in both geomagnetic field and geodynamo models |
606 |
J. Cheng, S. Stellmach, A. Ribeiro, A. Grannan, E. King, and J. Aurnou |
Behavioral regimes and transitions in local-scale models of planetary core convection |
607 |
G. Cox, P. Livermore, and J. Mound |
Forward models of torsional waves: geometric effects and wave-induced secular variation |
608 |
M. Dumberry, D. Laycock, and M. Heimpel |
QGZ: a quasi-geostrophic model of thermal convection |
609 |
C. C. Finlay, J. Aubert, and N. Gillet |
Gyre-driven decay of the geomagnetic dipole |
610 |
G. Helffrich |
The hard sphere view of the outer core |
611 |
K. Hori, S. Takehiro, and H. Shimizu |
Waves and linear stability of magnetoconvection in a rotating cylindrical annulus |
612 |
Y. Lin, P. Marti, J. Noir, and A. Jackson |
Precession driven dynamos in a full sphere |
613 |
S. Maffei and A. Jackson |
Quasi-geostrophic models and data assimilation strategies for fast dynamics the Earth's outer core |
614 |
M. Bouffard, S. Labrosse, G. Choblet, A. Fournier, and J. Aubert |
Tracers approach for studying double diffusive convection in Earth's outer core at high Lewis number |
615 |
H. Matsui and B. A. Buffett |
Dynamic scheme for the Reynolds stress including sub-grid scale (SGS) buoyancy for dynamo simulations in a rotating spherical shell |
616 |
H. Matsui, E. M. Heien, and CIG dynamo working group |
An accuracy benchmark test for numerical geodynamo models |
617 |
M. Matsushima |
Influence of anisotropic thermal diffusion with spatial variation on dynamics in the Earth's core |
618 |
C. Phillips and D. Ivers |
Magnetohydrodynamic instabilities with anisotropic thermal diffusion in a rapidly rotating sphere |
619 |
Y. Sasaki and S. Takehiro |
Penetration of magneto-hydrodynamic disturbances into a strongly stable outer layer caused by MHD dynamo in a rotating spherical shell |
620 |
J. Simkanin |
Magnetic and velocity fields structures at the low Prandtl, Ekman and magnetic Prandtl numbers |
621 |
S. Stellmach, M. Lischper, K. Julien, G. Vasil, E. King, J. Cheng, A. Ribeiro, and J. Aurnou |
Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics |
622 |
F. Takahashi |
Double diffusive convection in the Earth's core and the morphology of the geomagnetic field |
623 |
S. Takehiro |
Propagation of Alfven waves in an outer stably stratified layer excited by MHD thermal convection in a rapidly rotating spherical shell |
624 |
A. Tangborn and W. Kuang |
Geodynamo model and error parameter estimation using geomagnetic data assimilation |
625 |
T. Alboussiere, T. Le Reun, L. Huguet, Y. Corre, L. Duarte, F. Dubuffet, S. Labrosse, and Y. Ricard |
Compressible convection and dissipation |
626 |
S. Vantieghem, D. Cebron, and J. Noir |
Inertial modes & latitudinal libration in a triaxial ellipsoid |
627 |
J. Wicht and D. Meduri |
Properties of simulated magnetic field reversals and excursions |
628 |
T. Yanagisawa, A. Sakuraba, and Y. Hamano |
Flow reversals in a liquid metal convection with imposed horizontal magnetic field |
629 |
T. Yukutake and H. Shimizu |
A core flow model for the geomagnetic drifting field |
630 |
D. R. Stone, Q. Liu, D. S. Zimmerman, S. A. Triana, H.-C. Nataf, and D. P. Lathrop |
Magnetic field enhancement and hydromagnetic dynamics in an experimental model of the Earth's core |
631 |
R. Teed, C. Jones, and S. Tobias |
Torsional oscillations in geodynamo and magnetoconvection simulations |
801 |
H. Cao, J. M. Aurnou, J. Wicht, W. Dietrich, K. M. Soderlund, and C. T. Russell |
A dynamo explanation for Mercury's anomalous magnetic field |
802 |
K. M. Soderlund, E. M. King, and J. M. Aurnou |
Turbulent laboratory & numerical models of ice giant interior dynamics |
803 |
D. Breuer, A. Plesa, C. Huttig, and N. Tosi |
The role of non-Newtonian rheology on the thermal evolution of stagnant-lid bodies |
804 |
M. Dumberry and A. Rivoldini |
Mercury's inner core size and core-crystallization regime |
805 |
M. Laneuville, M. Wieczorek, D. Breuer, J. Aubert, G. Morard, and T. Ruckriemen |
A long-lived lunar dynamo powered by core crystallization |
806 |
A. Grannan, M. Le Bars, D. Cebron, and J. Aurnou |
Global-scale turbulent flows in libration-driven ellipsoids |
807 |
T. Miyagoshi, M. Kameyama, and M. Ogawa |
A stagnant lid formation and vigor of mantle convection in super-Earths |
808 |
N. Schmerr and S.-C. Han |
Joint seismic and gravity models of the lunar megaregolith |
809 |
F. Takahashi, H. Tsunakawa, H. Shimizu, H. Shibuya, and M. Matsushima |
An ancient core dynamo and true polar wander on the early Moon deduced from the lunar magnetic anomalies |
810 |
C. T. Unterborn, J. A. Johnson, and W. R. Panero |
Thorium abundances in solar twins and analogues: implications for the habitability of extrasolar planetary systems |
811 |
S. Urakawa and M. Okamoto |
On the electrical conductive layer at the core mantle boundary of Mercury |
812 |
T. Gastine, J. Wicht, and L. Duarte |
Explaining Jupiter's magnetic field and equatorial jet dynamics |
813 |
M. Furuichi, T. Nakagawa, and D. A. May |
Implicit solution of the material transport of the core formation simulation |
701 |
E. M. King and J. M. Aurnou |
Turbulent magnetostrophic convection |
702 |
Y. Charles, J. Noir, S. Vantieghem, D. Cebron, P. Scarfe, and A. Jackson |
Experimental study of latitudinal libration driven flows in planetary cores
|
703 |
J. Cheng and J. Aurnou |
On the accessibility of rotating convection regimes in laboratory experiments |
704 |
R. Deguen, M. Landeau, P. Olson, F. Risso, M. Keita, S. Cazin, G. Ehses, and M. Marchal |
Fluid dynamics experiments on metal-silicate mixing, fragmentation, and equilibration in magma oceans |
705 |
L. Huguet, T. Alboussiere, M. Bergman, R. Deguen, S. Labrosse |
Structure of a mushy layer under hyper-gravity with implications for the Earth's inner core |
706 |
J.-B. Wacheul, M. Le Bars, J. Monteux, and J. M. Aurnou |
Laboratory experiments on the breakup of liquid metal diapirs |
707 |
A. Ribeiro, J. L. Guermond, and J. M. Aurnou |
Coupled laboratory-numerical studies of convection in liquid gallium |
708 |
A. Ribeiro, G. Fabre, and J. M. Aurnou |
Understanding planetary core convection by studying experimentally rotating magnetoconvection in liquid gallium |
709 |
Y. Shirahata, H. Watanabe, H. Ikeda, T. Mitsui, K. Ishidoshiro, and S. Ishio |
Directional measurement of electron anti-neutrino |
710 |
J. Stipcevic, H. Tkalcic, and B. L. N. Kennett |
Multi-array probing of the lower mantle |
711 |
I. Sumita, I. Takeguchi, and Y. Ota |
Core formation in the transition of cracking and Stokes settling |
712 |
H. Watanabe for the KamLAND collaboration |
Geo-neutrino measurement with KamLAND |
713 |
L. Xie, E. Ito, and A. Yoneda |
Semiconductor diamond heater (SCD): generation of ultrahigh temperature in Kawai-cell |